Home
Class 12
MATHS
Prove that (1^2)/3""^n C1+(1^2+2^2)/5^n ...

Prove that `(1^2)/3""^n C_1+(1^2+2^2)/5^n C_2(1^1+2^2+3^2)/7^n C_3+` `+(1^2+2^2++n^2)/(2n+1)^n C_n=(n(n+3))/62^(n-2)dot`

Text Solution

Verified by Experts

`underset(r=0)overset(n)sumr^(2).^(n)C_(r)p^(r)q^(n-r)`
`= underset(r=0)overset(n)sumnr.^(n-1)C_(r-1)S=underset(r=1)overset(n)sum(1^(2)+2^(2)+"...."+r^(3))/(2r+1).^(n)C_(r)`
`= underset(r=1)overset(n)sum(r(r+1)(2r+1))/(6(2r+1)).^(n)C_(r)`
`= 1/6underset(r=1)overset(n)sumr(r+1).^(n)C_(r)`
`= 1/6underset(r=1)overset(n)sum(r+1).n..^(n-1)C_(r-1)`
`=1/6n underset(r=1)overset(n)sum((r-1)+2)^(n-1)C_(r-1)`
`=1/6n.underset(r=1)overset(n)sum((r-1)..^(n-1)C_(r-1)+2..^(n-1)C_(r-1))`
`= 1/6n.underset(r=1)overset(n)sum((n-1)..^(n-2)C_(r-2)+2..^(n-1)C_(r-1))`
`=1/6n.(n-1).2^(n-2)+(n)/(3).2^(n-1)=1/6n(n+3)2^(n-2)`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that .^n C_0 . ^(2n) C_n- ^n C_1 . ^(2n-2)C_n+^n C_2 . ^(2n-4)C_n-=2^ndot

Prove that 1/(n+1)=(.^n C_1)/2-(2(.^n C_2))/3+(3(.^n C_3))/4- . . . +(-1^(n+1))(n*(.^n C_n))/(n+1) .

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+....(n+1) terms =0

Prove the identity (1)/(""^(2n+1)C_(r)) + (1)/(""^(2n+1)C_(r+1)) = (2n+ 2)/(2n +1)*(1)/(""^(2n)C_(r))

1^(2). C_(1) - 2^(2) . C_(2)+ 3^(2). C_(3) -4^(2)C_(4) + ...+ (-1).""^(n-2)n^(2)C_(n)=

Prove that (^(2n)C_0)^2-(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that (.^n C_0)/1+(.^n C_2)/3+(.^n C_4)/5+(.^n C_6)/7+ . . . =(2^n)/(n+1)dot

Prove that (""^(2n)C_(0))^2-(""^(2n)C_(1))^2+(""^(2n)C_(2))^2-.....+(-1)^n(""^(2n)C_(2n))^2=(-1)^n.""^(2n)C_(n)