Home
Class 12
MATHS
Find the value of .^20 C0-(.^20C1)/2+(.^...

Find the value of `.^20 C_0-(.^20C_1)/2+(.^20C_2)/3-(.^20C_3)/4+...`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the series \[ S = \binom{20}{0} - \frac{\binom{20}{1}}{2} + \frac{\binom{20}{2}}{3} - \frac{\binom{20}{3}}{4} + \ldots \] we can express the general term of the series as: \[ T_R = \frac{\binom{20}{R}}{R+1} (-1)^R \] where \( R \) ranges from 0 to 20. Thus, we can write: \[ S = \sum_{R=0}^{20} T_R = \sum_{R=0}^{20} \frac{\binom{20}{R}}{R+1} (-1)^R \] ### Step 1: Rewrite the General Term Using the identity \[ \frac{\binom{N}{R}}{R+1} = \frac{1}{N+1} \binom{N+1}{R+1} \] we can rewrite our series: \[ S = \sum_{R=0}^{20} \frac{\binom{20}{R}}{R+1} (-1)^R = \frac{1}{21} \sum_{R=0}^{20} \binom{21}{R+1} (-1)^R \] ### Step 2: Change the Index of Summation Now, we can change the index of summation by letting \( k = R + 1 \). Then when \( R = 0 \), \( k = 1 \) and when \( R = 20 \), \( k = 21 \): \[ S = \frac{1}{21} \sum_{k=1}^{21} \binom{21}{k} (-1)^{k-1} \] ### Step 3: Factor out the Negative Sign We can factor out the negative sign from the summation: \[ S = -\frac{1}{21} \sum_{k=0}^{21} \binom{21}{k} (-1)^k \] ### Step 4: Evaluate the Summation The summation \( \sum_{k=0}^{21} \binom{21}{k} (-1)^k \) is equal to \( (1 - 1)^{21} = 0 \). ### Step 5: Substitute Back into the Equation Substituting this back into our expression for \( S \): \[ S = -\frac{1}{21} \cdot 0 = 0 \] ### Step 6: Adjust for the Missing Term Since we factored out \( k=0 \) from the summation, we need to add back \( \binom{21}{0} \): \[ S = -\frac{1}{21} (0 - 1) = \frac{1}{21} \] ### Final Result Thus, the value of the series is \[ \boxed{\frac{1}{21}} \]

To find the value of the series \[ S = \binom{20}{0} - \frac{\binom{20}{1}}{2} + \frac{\binom{20}{2}}{3} - \frac{\binom{20}{3}}{4} + \ldots \] we can express the general term of the series as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.5|8 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of "^20 C_0+^(20)C_1+^(20)C_2+^(20)C_3+^(20)C_4+^(20)C_ 12+^(20)C_ 13+^(20)C_14+^(20)C_15 is a. 2^(19)-(( "^(20)C_10 + "^(20)C_9))/2 b. 2^(19)-((^(20)C 10+2xx^(20)C9))/2 c. 2^(19)-(^(20)C 10)/2 d. none of these

Show that: .^20C_13+^20C_14-^20C_6-^20C_7=0

Find the value of √3 cosec 20° – sec 20°.

Prove that (""^20C_1)/(""^20C_0) + 2. (""^20C_2)/(""^20C_1) + 3. (""^20C_3)/(""^20C_2) + …..+20. (""^20C_20)/(""^20C_19) = 210

The sum of the series ""^20 C_0-""^20 C_1+""^20C_2-""^20C_3+...-...+""^20C_10 is:

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is