Home
Class 12
MATHS
If "|"x"}">1, then expand (1+x)^(-2)dot...

If `"|"x"}">1,` then expand `(1+x)^(-2)dot`

Text Solution

Verified by Experts

The correct Answer is:
`(1)/(x^(2)) - (2)/(x^(3)) + (3)/(x^(4)) - (4)/(x^(5)) + "…"`

Given that `|x| gt 1`.
So, the given expression can be written as
`x^(-2)(1+1/x)^(-2)=x^(-2)[1-2/x+3/(x^(2))-(4)/(x^(3))+"….."]`
`= [1/(x^(2))-(1)/(x^(3))+(3)/(x^(4))-(4)/(x^(5))+"…."]`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If |x|>1, then expand (1+x)^(-2)dot

Expand (1+x)^-3 .

Expand (1+4x)^(5) .

Expand: (1-x+x^2)^4

Expand: (x-(1)/(x)+5)^(2)

Expand |(3,x),(x,1)|

Find the coefficient of x^n in the expansion of (1-9x+20 x^2)^(-1)dot

Expand |(7x,6), (2x, 1)|

Using binomial theorem, expand {(x+y)^5+(x-y)^5}dot and hence find the value of {(sqrt(2)+1)^5+(sqrt(2)-1)^5}dot

Using binomial theorem, expand (x+1/y)^(11)dot