Home
Class 12
MATHS
If |x|<1, then find the coefficient of x...

If `|x|<1,` then find the coefficient of `x^n` in the expansion of `(1+2x+3x^2+4x^3+)^(1//2)dot`

Text Solution

Verified by Experts

The correct Answer is:
1

Since `1+2z+3x^(2)+4x^(3)+"……"oo= (1+x)^(2)`, we have
`(1+2x+3x^(2)+4x^(3)+"……"oo)^(1//2) = [(1-x)^(-2)]^(1//2)`
`= (1-x)^(-1)`
`= 1+x+x^(2)+"…."+x^(n) + "…."oo`
Therefore, the coefficient of `s^(n)` is `1`.
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If f(x) = |(x + lamda,x,x),(x,x + lamda,x),(x,x,x + lamda)|, " then " f(3x) - f(x) =

If f(x) = |(1,x,x+1),(2x,x(x-1),x(x+1)),(3x(x-1),x(x-1)(x-2),x(x+1)(x-1))| , using properties of determinant, find f(2x) - f(x).

If x is a negative integer, then (a) x+|x|=0 (b) x-|x|=0 (c) x+|x|=-2x (d) x=-|x|

If x is a negative integer, then (a) x+|x|=0 (b) x-|x|=0 x+|x|=-2x (d) x=-|x|

If x is a positive integer, then (a) x+|x|=0 (b) x-|x|=0 (c) x+|x|=-2x (d) x=-1|x|

If f(x)=sgn(x)={(|x|)/x,x!=0, 0, x=0 and g(x)=f(f(x)), then at x=0,g(x) is

If {x} and [x] represent fractional and integral part of x respectively then solve the equation x-1=(x-[x])(x-{x})

Solve the following : (i) |x-2|=(x-2) " (ii) " |x+3| = -x-3 (iii) |x^(2)-x|=x^(2)-x " (iv) " |x^(2)-x-2| =2+x-x^(2)

If f(x)=|[x-2, (x-1)^2, x^3] , [(x-1), x^2, (x+1)^3] , [x,(x+1)^2, (x+2)^3]| then coefficient of x in f(x) is

If f(x)= |{:(1,,x,,x+1),(2x,,x(x-1),,(x+1)x),(3x(x-1),,x(x-1)(x-2),,(x+1)x(x-1)):}| then the value of f(500) "_____"