Home
Class 12
MATHS
Prove that .^(n)C(0) - .^(n)C(1) + .^(n...

Prove that `.^(n)C_(0) - .^(n)C_(1) + .^(n)C_(2) - .^(n)C_(3) + "……" + (-1)^(r) + .^(n)C_(r) + "……" = (-1)^(r ) xx .^(n-1)C_(r )`.

Text Solution

Verified by Experts

`(r+1)xx.^(n)C_(0)-rxx.^(n)C_(1)+(r-1)xx.^(n)C_(2)-(r-2).^(n)C_(3)+"……"+(-1)^(r ) xx .^(n)C_(r ) + "….."`
`=` Coefficient of `x^(r )` in
`(.^(n)C_(0)--.^(n)C_(1)x+.^(n)C_(2)x^(2)-.^(n)C_(3)x^(3)+"…….."(-1)^(r)xx.^(n)C_(r )+"….") xx(1+2x+3x^(2)+4x^(3)+"....."(r+1)x^(r)+".....")`
`=` Coefficient of `x^(r)` in `(1-x)^(n)(1-x)^(2)`
= Coefficientof `x^(r)` in `(1-x)^(n-2)`
`= (-1)^(r)xx.^(n-2)C_(r )`
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.7|9 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

Prove that .^(n)C_(r )+.^(n-1)C_(r )+..+.^(r )C_(r )=.^(n+1)C_(r+1)

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

Prove that: (i) r.^(n)C_(r) =(n-r+1).^(n)C_(r-1) (ii) n.^(n-1)C_(r-1) = (n-r+1) .^(n)C_(r-1) (iii) .^(n)C_(r)+ 2.^(n)C_(r-1) +^(n)C_(r-2) =^(n+2)C_(r) (iv) .^(4n)C_(2n): .^(2n)C_(n) = (1.3.5...(4n-1))/({1.3.5..(2n-1)}^(2))

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

For ""^(n) C_(r) + 2 ""^(n) C_(r-1) + ""^(n) C_(r-2) =

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

Prove that sum_(r=0)^(2n) r.(""^(2n)C_(r))^(2)= 2.""^(4n-1)C_(2n-1) .

Prove that : (""^(n)C_(r+1))/(""^(n)C_(r))=(n-r)/(r+1)

If ([""^(n)C_(r) + 4*""^(n)C_(r+1) + 6*""^(n)C_(r+2)+ 4*""^(n)C_(r+3) + ""^(n)C_(r+4)])/([""^(n)C_(r) + 3. ""^(n)C_(r+1)+ 3*""^(n)C_(r+2) + ""^(n)C_(r +3)])=(n + lambda)/(r+lambda) the value of lambda is