Home
Class 12
MATHS
The expression (sqrt(2x^2+1)+sqrt(2x^2-1...

The expression `(sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2x^2-1)))^6` is polynomial of degree

A

6

B

8

C

10

D

12

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression: \[ f(x) = \left(\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}\right)^6 + \left(\frac{2}{\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}}\right)^6 \] ### Step 1: Simplify the expression First, let's denote: \[ a = \sqrt{2x^2 + 1} \quad \text{and} \quad b = \sqrt{2x^2 - 1} \] So, we can rewrite the expression as: \[ f(x) = (a + b)^6 + \left(\frac{2}{a + b}\right)^6 \] ### Step 2: Evaluate \( a + b \) Next, we need to evaluate \( a + b \): \[ a + b = \sqrt{2x^2 + 1} + \sqrt{2x^2 - 1} \] ### Step 3: Evaluate \( \frac{2}{a + b} \) Now, we can find \( \frac{2}{a + b} \): \[ \frac{2}{a + b} = \frac{2}{\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}} \] To simplify this, we can multiply the numerator and denominator by \( \sqrt{2x^2 + 1} - \sqrt{2x^2 - 1} \): \[ \frac{2(\sqrt{2x^2 + 1} - \sqrt{2x^2 - 1})}{(2x^2 + 1) - (2x^2 - 1)} = \frac{2(\sqrt{2x^2 + 1} - \sqrt{2x^2 - 1})}{2} \] This simplifies to: \[ \sqrt{2x^2 + 1} - \sqrt{2x^2 - 1} \] ### Step 4: Substitute back into \( f(x) \) Now substituting back into \( f(x) \): \[ f(x) = (a + b)^6 + (a - b)^6 \] ### Step 5: Apply the Binomial Theorem Using the Binomial Theorem, we can expand both \( (a + b)^6 \) and \( (a - b)^6 \): \[ (a + b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} b^k \] \[ (a - b)^6 = \sum_{k=0}^{6} \binom{6}{k} a^{6-k} (-b)^k \] Adding these two expansions, we notice that the odd powers of \( b \) will cancel out: \[ f(x) = 2 \sum_{k \text{ even}} \binom{6}{k} a^{6-k} b^k \] ### Step 6: Determine the degree of \( f(x) \) The maximum degree of \( f(x) \) will occur when \( k = 0 \) and \( k = 6 \): - For \( k = 0 \): \( a^6 = (2x^2 + 1)^3 \) contributes \( 6 \) (degree). - For \( k = 6 \): \( b^6 = (2x^2 - 1)^3 \) contributes \( 6 \) (degree). Thus, the maximum degree of \( f(x) \) is: \[ \text{Degree of } f(x) = 6 \] ### Final Answer The expression is a polynomial of degree **6**.

To solve the problem, we need to analyze the expression: \[ f(x) = \left(\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}\right)^6 + \left(\frac{2}{\sqrt{2x^2 + 1} + \sqrt{2x^2 - 1}}\right)^6 \] ### Step 1: Simplify the expression ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The expression (1)/(sqrt(x+2sqrt(x-1)))+(1)/(sqrt(x-2sqrt(x-1))) simplifies to:

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Degree of the polynomial [sqrt(x^2+1)+sqrt(x^2-1)]^8+[2/(sqrt(x^2+1)+sqrt(x^2-1))]^8 is.

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

Differentiate the following function (sqrt(x^2+1)+sqrt(x^2-1))/(sqrt(x^2+1)-sqrt(x^2-1)

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

int(x+3sqrt(x^(2))+6sqrt(x))/(x(1+3sqrt(x)))dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

Differentiate w.r.t 'x' f(x) = (sqrt(x^(2)+1)+sqrt(x^(2)-1))/(sqrt(x^(2)+1)-sqrt(x^(2)-1))

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The coefficient of the middle term in the binomial expansion in powers...

    Text Solution

    |

  2. If (1+x)^5=a0+a1x+a2x^2+a3x^3+a4x^4+a5x^5, then the value of (a0-a2+a4...

    Text Solution

    |

  3. The expression (sqrt(2x^2+1)+sqrt(2x^2-1))^6 + (2/(sqrt(2x^2+1)+sqrt(2...

    Text Solution

    |

  4. If the 6th term in the expansion of(1/(x^(8/3))+x^2(log)(10)x)^8 is 56...

    Text Solution

    |

  5. If in the expansion of (a-2b)^(n), the sum of 5^(th) and 6^(th) terms ...

    Text Solution

    |

  6. The number of real negative terms in the binomial expansion of (1+i x)...

    Text Solution

    |

  7. The sum of rational term in (sqrt(2)+root3 3 + root6 5)^(10) is equal ...

    Text Solution

    |

  8. The value of x for which the sixth term in the expansion of [2^(log)2s...

    Text Solution

    |

  9. The number of distinct terms in the expansion of (x+1/x+1/(x^2))^(15) ...

    Text Solution

    |

  10. Find the sum 1 xx 2 xx .^(n)C(1) + 2 xx 3 xx .^(n)C(2) + "….." + 2 xx...

    Text Solution

    |

  11. If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1+x^(2))^(n-r)x^(2r), then the ...

    Text Solution

    |

  12. The fractional part of 2^(4n)/15 is (n in N) (a) 1/15 (b) 2/15 (c...

    Text Solution

    |

  13. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  14. The remainder when the number 3^(256) - 3^(12) is divided by 8 is (a) ...

    Text Solution

    |

  15. The smallest integer larger than (sqrt(3) + sqrt(2))^(6) is

    Text Solution

    |

  16. The coefficient of x^5 in the expansion of (1+x^2)(1+x)^4 is (a) 12 (b...

    Text Solution

    |

  17. Coefficient of x^(2)in the expansion of (x^(3) + 2x^(2) + x + 4)^(15) ...

    Text Solution

    |

  18. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  19. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  20. If (1+2x+x^(2))^(n) = sum(r=0)^(2n)a(r)x^(r), then a(r) =

    Text Solution

    |