Home
Class 12
MATHS
If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1...

If `(4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r)`, then the value of `sum_(r=0)^(n)a_(r)` is

A

`3^(n)`

B

`4^(n)`

C

`5^(n)`

D

`6^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum_{r=0}^{n} a_r \) given the equation: \[ (4x^2 + 1)^n = \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] ### Step-by-Step Solution: 1. **Understanding the Given Equation**: We start with the equation \( (4x^2 + 1)^n \). This can be expressed using the binomial theorem: \[ (4x^2 + 1)^n = \sum_{k=0}^{n} \binom{n}{k} (4x^2)^k (1)^{n-k} = \sum_{k=0}^{n} \binom{n}{k} 4^k x^{2k} \] 2. **Rewriting the Right-Hand Side**: The right-hand side of the equation is given as: \[ \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] We can rewrite \( (1 + x^2)^{n-r} \) using the binomial theorem as well: \[ (1 + x^2)^{n-r} = \sum_{j=0}^{n-r} \binom{n-r}{j} x^{2j} \] 3. **Combining Both Sides**: We need to equate both sides. The left-hand side can be expressed as: \[ \sum_{k=0}^{n} \binom{n}{k} 4^k x^{2k} \] And the right-hand side can be expressed as: \[ \sum_{r=0}^{n} a_r \sum_{j=0}^{n-r} \binom{n-r}{j} x^{2(j+r)} \] 4. **Finding Coefficients**: To find \( a_r \), we need to compare coefficients of \( x^{2m} \) on both sides. By matching the coefficients, we find: \[ a_r = \binom{n}{r} 4^r \] 5. **Calculating \( \sum_{r=0}^{n} a_r \)**: Now we need to find \( \sum_{r=0}^{n} a_r \): \[ \sum_{r=0}^{n} a_r = \sum_{r=0}^{n} \binom{n}{r} 4^r \] This is the binomial expansion of \( (1 + 4)^n \): \[ \sum_{r=0}^{n} a_r = (1 + 4)^n = 5^n \] ### Conclusion: Thus, the value of \( \sum_{r=0}^{n} a_r \) is: \[ \boxed{5^n} \]

To solve the problem, we need to find the value of \( \sum_{r=0}^{n} a_r \) given the equation: \[ (4x^2 + 1)^n = \sum_{r=0}^{n} a_r (1 + x^2)^{n-r} x^{2r} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2) , then find the value of sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2) is______.

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

If f(n)=sum_(r=1)^(n) r^(4) , then the value of sum_(r=1)^(n) r(n-r)^(3) is equal to

If (1+x^(2))^(n) =sum_(r=0)^(n) a_(r)x^(r )= (1+x+x^(2)+x^(3))^(100) . If a = sum_(r=0)^(300)a_(r) , then sum_(r=0)^(300) ra_(r) is

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The number of distinct terms in the expansion of (x+1/x+1/(x^2))^(15) ...

    Text Solution

    |

  2. Find the sum 1 xx 2 xx .^(n)C(1) + 2 xx 3 xx .^(n)C(2) + "….." + 2 xx...

    Text Solution

    |

  3. If (4x^(2) + 1)^(n) = sum(r=0)^(n)a(r)(1+x^(2))^(n-r)x^(2r), then the ...

    Text Solution

    |

  4. The fractional part of 2^(4n)/15 is (n in N) (a) 1/15 (b) 2/15 (c...

    Text Solution

    |

  5. If p=(8+3sqrt(7))^n a n df=p-[p],w h e r e[dot] denotes the greatest i...

    Text Solution

    |

  6. The remainder when the number 3^(256) - 3^(12) is divided by 8 is (a) ...

    Text Solution

    |

  7. The smallest integer larger than (sqrt(3) + sqrt(2))^(6) is

    Text Solution

    |

  8. The coefficient of x^5 in the expansion of (1+x^2)(1+x)^4 is (a) 12 (b...

    Text Solution

    |

  9. Coefficient of x^(2)in the expansion of (x^(3) + 2x^(2) + x + 4)^(15) ...

    Text Solution

    |

  10. If the coefficients of rth and (r+1)t h terms in the expansion of (3+7...

    Text Solution

    |

  11. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  12. If (1+2x+x^(2))^(n) = sum(r=0)^(2n)a(r)x^(r), then a(r) =

    Text Solution

    |

  13. If the term independent of x in the (sqrt(x)-k/(x^2))^(10) is 405, the...

    Text Solution

    |

  14. The coefficient of x^(53) in the expansion sum(m=0)^(100)^(100)Cm(x-3)...

    Text Solution

    |

  15. If the coefficient of x^7 in (ax^2+1/(bx))^11 is equal to the coeffici...

    Text Solution

    |

  16. The coefficient of x^3 in the expansion of (1-x+x^2)^5 is (a). -83 (...

    Text Solution

    |

  17. The term independent of a in the expansion of (1+sqrt(a)+1/(sqrt(a)-1)...

    Text Solution

    |

  18. The coefficient of x^(10) in the expansion of (1+x^2-x^3)^8 is 476 b. ...

    Text Solution

    |

  19. The coefficient of x^(n) in (1+x)^(101) (1-x+x^(2))^(100) is

    Text Solution

    |

  20. The coefficient of x^(28) in the expansion of (1+x^3-x^6)^(30) is 1 b....

    Text Solution

    |