Home
Class 12
MATHS
The value of .^(20)C(10)+.^(20)C(1)+.^(2...

The value of `.^(20)C_(10)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15)` is

A

`2^(19)-((.^(20)C_(10)+.^(20)C_(9)))/(2)`

B

`2^(19)-((.^(20)C_(10)+2xx.^(20)C_(9)))/(2)`

C

`2^(19)-(.^(20)C_(10))/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the expression: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{12} + \binom{20}{13} + \binom{20}{14} + \binom{20}{15} \] ### Step 1: Rewrite the expression We can group the terms in the expression based on the symmetry of binomial coefficients: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{12} + \binom{20}{13} + \binom{20}{14} + \binom{20}{15} \] Notice that: \[ \binom{20}{12} = \binom{20}{8}, \quad \binom{20}{13} = \binom{20}{7}, \quad \binom{20}{14} = \binom{20}{6}, \quad \binom{20}{15} = \binom{20}{5} \] Thus, we can rewrite the expression as: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{5} + \binom{20}{6} + \binom{20}{7} + \binom{20}{8} \] ### Step 2: Use the Binomial Theorem The Binomial Theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] For \( a = 1 \) and \( b = 1 \), we have: \[ (1 + 1)^{20} = \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \] ### Step 3: Calculate the total sum The total sum of all the coefficients from \( k = 0 \) to \( k = 20 \) is \( 2^{20} \). ### Step 4: Split the sum The sum of the coefficients can be split into two halves: \[ \sum_{k=0}^{20} \binom{20}{k} = \sum_{k=0}^{10} \binom{20}{k} + \sum_{k=11}^{20} \binom{20}{k} \] By symmetry, we know: \[ \sum_{k=0}^{10} \binom{20}{k} = \sum_{k=11}^{20} \binom{20}{k} = \frac{2^{20}}{2} = 2^{19} \] ### Step 5: Calculate the required sum Now, we need to find the sum of the coefficients from \( k = 0 \) to \( k = 4 \) and from \( k = 12 \) to \( k = 15 \): \[ \sum_{k=0}^{4} \binom{20}{k} + \sum_{k=12}^{15} \binom{20}{k} \] We can express the sum from \( k = 5 \) to \( k = 11 \) as: \[ \sum_{k=5}^{11} \binom{20}{k} = \sum_{k=0}^{10} \binom{20}{k} - \sum_{k=0}^{4} \binom{20}{k} \] ### Step 6: Final calculation Thus, we can write: \[ \text{Required Sum} = 2^{19} - \left( \binom{20}{5} + \binom{20}{6} + \binom{20}{7} + \binom{20}{8} + \binom{20}{9} + \binom{20}{10} + \binom{20}{11} \right) \] ### Conclusion The final answer can be computed using the values of the binomial coefficients, but we can conclude that the value of the original expression is: \[ \text{Value} = 2^{19} - \left( \binom{20}{9} + \binom{20}{10} + \binom{20}{11} \right) \]

To solve the problem, we need to find the value of the expression: \[ \binom{20}{10} + \binom{20}{1} + \binom{20}{2} + \binom{20}{3} + \binom{20}{4} + \binom{20}{12} + \binom{20}{13} + \binom{20}{14} + \binom{20}{15} \] ### Step 1: Rewrite the expression ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The value of "^20 C_0+^(20)C_1+^(20)C_2+^(20)C_3+^(20)C_4+^(20)C_ 12+^(20)C_ 13+^(20)C_14+^(20)C_15 is a. 2^(19)-(( "^(20)C_10 + "^(20)C_9))/2 b. 2^(19)-((^(20)C 10+2xx^(20)C9))/2 c. 2^(19)-(^(20)C 10)/2 d. none of these

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

Find the value of .^20 C_0-(.^20C_1)/2+(.^20C_2)/3-(.^20C_3)/4+...

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. Maximum sum of coefficient in the expansion of (1-xsintheta+x^2)^n is ...

    Text Solution

    |

  2. If the sum of the coefficients in the expansion of (a+b)^n is 4096, th...

    Text Solution

    |

  3. The value of .^(20)C(10)+.^(20)C(1)+.^(20)C(2)+.^(20)C(3)+.^(20)C(4)+....

    Text Solution

    |

  4. The sum of series ^^(20)C0-^^(20)C1+^^(20)C2-^^(20)C3++^^(20)C 10 is 1...

    Text Solution

    |

  5. If (3+x^(2008)+x^(2009))^(2010)=a0+a1x+a2x^2++an x^n , then the value ...

    Text Solution

    |

  6. Value of sum(k=1)^oosum(r=0)^k1/(3^k)(^k Cr) is 2/3 b. 4/3 c. 2 d. 1

    Text Solution

    |

  7. The value of sum(r=0)^(10)(r)^(20)Cr is equal to 20(2^(18)+^(19)C(10))...

    Text Solution

    |

  8. [(^nC0+^n C3+)-1/2(^n C1+^n C2+^n C4+^n C5]^2 + 3/4(^n C1-^n C2+^n C4 ...

    Text Solution

    |

  9. The value of sum(r=1)^(n+1)(sum(k=1)^n^k C(r-1))(w h e r er ,k ,n in ...

    Text Solution

    |

  10. The sum sumsum(0leilejle10) (""^(10)C(j))(""^(j)C(r-1)) is equal to

    Text Solution

    |

  11. The value of the sum ""^(1000)C(50) + ""^(999)C(49) +""^(998)C(48)+"…....

    Text Solution

    |

  12. If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)(alpha-x-1)^(r)}=0, then (a) b...

    Text Solution

    |

  13. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  14. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  15. If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 40...

    Text Solution

    |

  16. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  17. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  18. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  19. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  20. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |