Home
Class 12
MATHS
The sum sumsum(0leilejle10) (""^(10)C(j)...

The sum `sumsum_(0leilejle10) (""^(10)C_(j))(""^(j)C_(r-1))` is equal to

A

`2^(10) - 1`

B

`2^(10)`

C

`3^(10) - 1`

D

`3^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the double summation: \[ \sum_{0 \leq r \leq j \leq 10} \binom{10}{j} \binom{j}{r-1} \] ### Step-by-Step Solution: 1. **Understanding the Summation**: The expression involves a double summation where \( j \) ranges from 0 to 10, and for each \( j \), \( r \) ranges from 0 to \( j \). The binomial coefficients \(\binom{10}{j}\) and \(\binom{j}{r-1}\) represent the number of ways to choose \( j \) items from 10 and \( r-1 \) items from \( j \), respectively. 2. **Changing the Order of Summation**: We can rewrite the double summation by changing the order of summation. Instead of summing over \( r \) first, we can sum over \( j \) first: \[ \sum_{j=0}^{10} \binom{10}{j} \sum_{r=0}^{j} \binom{j}{r-1} \] 3. **Evaluating the Inner Summation**: The inner summation \(\sum_{r=0}^{j} \binom{j}{r-1}\) can be simplified. Notice that when \( r = 0 \), \(\binom{j}{-1} = 0\). Therefore, we can start the summation from \( r = 1 \): \[ \sum_{r=1}^{j} \binom{j}{r-1} = \sum_{k=0}^{j-1} \binom{j}{k} = 2^j \] where we used the identity that the sum of the binomial coefficients equals \( 2^j \). 4. **Substituting Back**: Now, we substitute back into the original summation: \[ \sum_{j=0}^{10} \binom{10}{j} 2^j \] 5. **Using the Binomial Theorem**: According to the Binomial Theorem, we know that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] Setting \( n = 10 \) and \( x = 2 \), we have: \[ (1 + 2)^{10} = 3^{10} \] 6. **Final Result**: Therefore, the double summation evaluates to: \[ \sum_{j=0}^{10} \binom{10}{j} 2^j = 3^{10} \] ### Conclusion: The value of the given summation is \( 3^{10} \).

To solve the problem, we need to evaluate the double summation: \[ \sum_{0 \leq r \leq j \leq 10} \binom{10}{j} \binom{j}{r-1} \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(0leiltjle5) sum(""^(5)C_(j))(""^(j)C_(i)) is equal to "_____"

The value of (sumsum)_(0leilejlen) (""^(n)C_(i) + ""^(n)C_(j)) is equal to

Find the sum (sumsum)_(0leiltjlen) ""^(n)C_(i) .

The sum sum_(0 leq i)sum_(leq j leq 10) (10C_j)(jC_i) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

Find the value of sumsum_(0leiltjlen) (""^(n)C_(i)+""^(n)C_(j)) .

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Evaluate sum_(0 le i le j le 10) ""^(21)C_(i) * ""^(21)C_(j) .

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. [(^nC0+^n C3+)-1/2(^n C1+^n C2+^n C4+^n C5]^2 + 3/4(^n C1-^n C2+^n C4 ...

    Text Solution

    |

  2. The value of sum(r=1)^(n+1)(sum(k=1)^n^k C(r-1))(w h e r er ,k ,n in ...

    Text Solution

    |

  3. The sum sumsum(0leilejle10) (""^(10)C(j))(""^(j)C(r-1)) is equal to

    Text Solution

    |

  4. The value of the sum ""^(1000)C(50) + ""^(999)C(49) +""^(998)C(48)+"…....

    Text Solution

    |

  5. If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)(alpha-x-1)^(r)}=0, then (a) b...

    Text Solution

    |

  6. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  7. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  8. If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 40...

    Text Solution

    |

  9. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  10. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  11. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  12. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  13. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  14. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  15. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  16. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  17. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  18. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  19. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  20. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |