Home
Class 12
MATHS
The value of the sum ""^(1000)C(50) + ""...

The value of the sum `""^(1000)C_(50) + ""^(999)C_(49) +""^(998)C_(48)+"…."""^(950)C_(0)` is

A

(a) `""^(1001)C_(50)`

B

(b) `""^(1002)C_(951)`

C

(c) `""^(1001)C_(950)`

D

(d) `""^(1002)C_(50)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the sum \( \binom{1000}{50} + \binom{999}{49} + \binom{998}{48} + \ldots + \binom{950}{0} \), we can use the properties of binomial coefficients and the Binomial Theorem. ### Step-by-step Solution: 1. **Understanding the Sum**: The sum we need to evaluate is: \[ S = \binom{1000}{50} + \binom{999}{49} + \binom{998}{48} + \ldots + \binom{950}{0} \] This sum consists of binomial coefficients where the upper index decreases from 1000 to 950 and the lower index decreases from 50 to 0. 2. **Using the Binomial Theorem**: We know from the Binomial Theorem that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] We can express our sum in terms of the coefficients of a polynomial. 3. **Finding the Coefficient**: The sum \( S \) can be interpreted as the coefficient of \( x^{950} \) in the expansion of: \[ (1 + x)^{1000} + (1 + x)^{999} + (1 + x)^{998} + \ldots + (1 + x)^{950} \] This is because each term \( \binom{n}{k} \) corresponds to the coefficient of \( x^k \) in \( (1 + x)^n \). 4. **Simplifying the Expression**: The above expression can be simplified using the formula for the sum of a geometric series. The sum can be expressed as: \[ \sum_{n=950}^{1000} (1 + x)^n = (1 + x)^{950} \left(1 + (1 + x) + (1 + x)^2 + \ldots + (1 + x)^{50}\right) \] The series inside the parentheses is a geometric series with first term 1 and common ratio \( (1 + x) \), and it has 51 terms. 5. **Calculating the Geometric Series**: The sum of the geometric series is given by: \[ \frac{(1 + x)^{51} - 1}{(1 + x) - 1} = \frac{(1 + x)^{51} - 1}{x} \] 6. **Final Expression**: Therefore, we can write: \[ S = (1 + x)^{950} \cdot \frac{(1 + x)^{51} - 1}{x} \] 7. **Finding the Coefficient of \( x^{950} \)**: We need to find the coefficient of \( x^{950} \) in: \[ (1 + x)^{1001} - (1 + x)^{950} \] The coefficient of \( x^{950} \) in \( (1 + x)^{1001} \) is \( \binom{1001}{950} = \binom{1001}{51} \). 8. **Final Result**: Thus, the value of the sum \( S \) is: \[ S = \binom{1001}{51} \] ### Conclusion: The value of the sum \( \binom{1000}{50} + \binom{999}{49} + \ldots + \binom{950}{0} \) is \( \binom{1001}{51} \).

To find the value of the sum \( \binom{1000}{50} + \binom{999}{49} + \binom{998}{48} + \ldots + \binom{950}{0} \), we can use the properties of binomial coefficients and the Binomial Theorem. ### Step-by-step Solution: 1. **Understanding the Sum**: The sum we need to evaluate is: \[ S = \binom{1000}{50} + \binom{999}{49} + \binom{998}{48} + \ldots + \binom{950}{0} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

Find the value of : ""^(50)C_(47)

The sum of the series ""^(4)C_(0) + ""^(5)C_(1) x + ""^(6)C_(2) x^(2)+""^(7)C_(3)x^(3) +... to infty , is

The value of ((""^(50)C_(0))/(1)+(""^(50)C_(2))/(3)+(""^(50)C_(4))/(5)+….+(""^(50)C_(50))/(51)) is :

Let q be a positive with q le 50 . If the sum ""^(98)C_(30)+2" "^(97)C_(30)+3." "^(96)C_(30)+ …… + 68." "^(31)C_(30)+69." "^(30)C_(30)=""^(100)C_(q) Find the sum of the digits of q.

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is (a) 40.^(69)C_(29) (b) 40.^(70)C_(30) (c) .^(60)C_(29) (d) .^(70)C_(30)

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The value of sum(r=1)^(n+1)(sum(k=1)^n^k C(r-1))(w h e r er ,k ,n in ...

    Text Solution

    |

  2. The sum sumsum(0leilejle10) (""^(10)C(j))(""^(j)C(r-1)) is equal to

    Text Solution

    |

  3. The value of the sum ""^(1000)C(50) + ""^(999)C(49) +""^(998)C(48)+"…....

    Text Solution

    |

  4. If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)(alpha-x-1)^(r)}=0, then (a) b...

    Text Solution

    |

  5. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  6. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  7. If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 40...

    Text Solution

    |

  8. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  9. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  10. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  11. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  12. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  13. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  14. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  15. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  17. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  18. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  19. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  20. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |