Home
Class 12
MATHS
If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)...

If `sum_(r=0)^(n){a_(r)(x-alpha+2)^(r)-b_(r)(alpha-x-1)^(r)}=0`, then (a) `b_(n) = 1+a_(n)` (b) `b_(n) = (-1)^(n)xxa_(n)` (c) `b_(n) = (-1)^(n-1) xxa_(n)` (d) `b_(n) + 1 = a_(n)`

A

`b_(n) = 1+a_(n)`

B

`b_(n) = (-1)^(n)xxa_(n)`

C

`b_(n) = (-1)^(n-1) xxa_(n)`

D

`b_(n) + 1 = a_(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation: \[ \sum_{r=0}^{n} a_r (x - \alpha + 2)^r - b_r (\alpha - x - 1)^r = 0 \] This implies that the two sums must be equal for all values of \(x\). Let's denote \(t = \alpha - x - 1\). Then we can rewrite \(x - \alpha + 2\) as follows: \[ x - \alpha + 2 = 1 - t \] Substituting this into the original equation gives: \[ \sum_{r=0}^{n} a_r (1 - t)^r - b_r t^r = 0 \] This can be rearranged to: \[ \sum_{r=0}^{n} a_r (1 - t)^r = \sum_{r=0}^{n} b_r t^r \] Now, we need to find the coefficient of \(t^n\) on both sides of the equation. ### Step 1: Expand the left-hand side The left-hand side can be expressed as: \[ \sum_{r=0}^{n} a_r (1 - t)^r = a_0 (1 - t)^0 + a_1 (1 - t)^1 + a_2 (1 - t)^2 + \ldots + a_n (1 - t)^n \] ### Step 2: Use the Binomial Theorem Using the Binomial Theorem, we can expand \((1 - t)^r\): \[ (1 - t)^r = \sum_{k=0}^{r} \binom{r}{k} (-t)^k \] Thus, we can rewrite the left-hand side as: \[ \sum_{r=0}^{n} a_r \sum_{k=0}^{r} \binom{r}{k} (-t)^k \] ### Step 3: Collect terms for \(t^n\) To find the coefficient of \(t^n\), we need to consider the contributions from each \(a_r\): The coefficient of \(t^n\) in the left-hand side will be: \[ \sum_{r=n}^{n} a_r \binom{r}{n} (-1)^n = (-1)^n a_n \] ### Step 4: Right-hand side For the right-hand side, we have: \[ \sum_{r=0}^{n} b_r t^r \] The coefficient of \(t^n\) here is simply \(b_n\). ### Step 5: Set the coefficients equal Since both sides of the equation must be equal, we have: \[ b_n = (-1)^n a_n \] ### Conclusion Thus, the relationship between \(b_n\) and \(a_n\) is: \[ b_n = (-1)^n a_n \] Now, let's check the options given in the question: - (a) \(b_n = 1 + a_n\) - (b) \(b_n = (-1)^n a_n\) **(This is correct)** - (c) \(b_n = (-1)^{n-1} a_n\) - (d) \(b_n + 1 = a_n\) The correct answer is option (b).

To solve the problem, we need to analyze the given equation: \[ \sum_{r=0}^{n} a_r (x - \alpha + 2)^r - b_r (\alpha - x - 1)^r = 0 \] This implies that the two sums must be equal for all values of \(x\). Let's denote \(t = \alpha - x - 1\). Then we can rewrite \(x - \alpha + 2\) as follows: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos
CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The sum sumsum(0leilejle10) (""^(10)C(j))(""^(j)C(r-1)) is equal to

    Text Solution

    |

  2. The value of the sum ""^(1000)C(50) + ""^(999)C(49) +""^(998)C(48)+"…....

    Text Solution

    |

  3. If sum(r=0)^(n){a(r)(x-alpha+2)^(r)-b(r)(alpha-x-1)^(r)}=0, then (a) b...

    Text Solution

    |

  4. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  5. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  6. If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 40...

    Text Solution

    |

  7. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  8. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  9. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  10. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  11. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  12. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  13. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  14. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  15. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  16. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  17. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  18. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  19. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  20. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |