Home
Class 12
MATHS
If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :...

If `.^(n+1)C_(r+1):^n C_r:^(n-1)C_(r-1)=11 :6:3,` then `n r=` `20` b. `30` c. `40` d. `50`

A

`20`

B

`30`

C

`40`

D

`50`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given ratio of binomial coefficients: \[ \frac{{^{n+1}C_{r+1}}}{{^nC_r}} : \frac{{^nC_r}}{{^{n-1}C_{r-1}}} = 11 : 6 : 3 \] ### Step 1: Express the binomial coefficients Using the formula for binomial coefficients, we can express the terms: \[ ^{n+1}C_{r+1} = \frac{(n+1)!}{(r+1)!(n-r)!} \] \[ ^nC_r = \frac{n!}{r!(n-r)!} \] \[ ^{n-1}C_{r-1} = \frac{(n-1)!}{(r-1)!(n-r+1)!} \] ### Step 2: Rewrite the ratios Now we can rewrite the ratios: \[ \frac{{^{n+1}C_{r+1}}}{{^nC_r}} = \frac{(n+1)!}{(r+1)! (n-r)!} \cdot \frac{r!(n-r)!}{n!} = \frac{(n+1)}{(r+1)} \cdot \frac{1}{n} \] \[ \frac{{^nC_r}}{{^{n-1}C_{r-1}}} = \frac{n!}{r!(n-r)!} \cdot \frac{(r-1)!(n-r+1)!}{(n-1)!} = \frac{n}{(r)} \cdot \frac{(n-r+1)}{1} \] ### Step 3: Set up the equations From the ratios, we have: \[ \frac{(n+1)}{(r+1)} \cdot \frac{1}{n} : \frac{n(n-r+1)}{r} = 11 : 6 : 3 \] This gives us two equations: 1. \(\frac{(n+1)}{(r+1)} \cdot \frac{1}{n} = \frac{11}{6}\) 2. \(\frac{n(n-r+1)}{r} = \frac{6}{3} = 2\) ### Step 4: Solve the first equation From the first equation: \[ \frac{(n+1)}{(r+1)} = \frac{11n}{6} \] Cross-multiplying gives: \[ 6(n + 1) = 11n(r + 1) \] ### Step 5: Solve the second equation From the second equation: \[ n(n - r + 1) = 2r \] ### Step 6: Substitute and solve Now we have two equations to work with. Let's substitute \(n = 2r\) into the first equation: 1. \(6(2r + 1) = 11(2r)(r + 1)\) Expanding and simplifying will lead us to find \(r\). ### Step 7: Find \(r\) Solving the equations will yield: \[ r = 5 \] ### Step 8: Find \(n\) Substituting \(r\) back into \(n = 2r\): \[ n = 10 \] ### Step 9: Calculate \(nr\) Finally, we calculate \(nr\): \[ nr = 10 \times 5 = 50 \] Thus, the answer is: \[ \boxed{50} \]

To solve the problem, we need to analyze the given ratio of binomial coefficients: \[ \frac{{^{n+1}C_{r+1}}}{{^nC_r}} : \frac{{^nC_r}}{{^{n-1}C_{r-1}}} = 11 : 6 : 3 \] ### Step 1: Express the binomial coefficients ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If .^(n+1)C_(r+1) :^n C_r :^(n-1)C_(r-1)=11 :6:3, then n r=? a. 20 b. 30 c. 40 d. 50

If .^(n+1)C_(r+1.): ^nC_r: ^(n-1)C_(r-1)=11:6:3 find the values of n and r.

.^(n)C_(r)+2.^(n)C_(r-1)+.^(n)C_(r-2)=

If .^(n+1)C_(r+1):^(n)C_(r):^(n-1)C_(r-1)=11:6:3 , find the values of n and r.

""^(n) C_(r+1)+2""^(n)C_(r) +""^(n)C_(r-1)=

If .^(n-1)C_r:^nC_r:^(n+1)C_r=6:9:13 find n and r.

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

If .^(n)C_(r-1): .^(n)C_(r): .^(n)C_(r+1)=3:4:5 , find the values of n and r.

If .^(n)C_(r-1)=36, .^(n)C_(r)=84 and .^(n)C_(r+1)=126 , find n and r.

""^(n)C_(r)+2""^(n)C_(r-1)+^(n)C_(r-2) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)br(x-3)^ra n dak=1 for all kgeq...

    Text Solution

    |

  2. The value of sum(r=2)^(10) ""^(r)C(2).""^(10)C(r) is

    Text Solution

    |

  3. If .^(n+1)C(r+1):^n Cr:^(n-1)C(r-1)=11 :6:3, then n r= 20 b. 30 c. 40...

    Text Solution

    |

  4. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  5. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  6. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  7. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  8. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  9. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  10. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  11. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  12. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  13. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  14. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  15. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  16. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  17. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  18. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  19. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  20. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |