Home
Class 12
MATHS
The value of (.^(n)C(0))/(n)+(.^(n)C(1))...

The value of `(.^(n)C_(0))/(n)+(.^(n)C_(1))/(n+1)+(.^(n)C_(2))/(n+2)+"..."+(.^(n)C_(n))/(2n)`
(a)`underset(0)overset(1)intx^(n-1)(1+x)^(n)dx` (b)`underset(1)overset(2)intx^(n)(x-1)^(n-1)dx` (c)`underset(1)overset(2)int(1+x)^(n)dx`
(d)`underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`

A

`underset(0)overset(1)intx^(n-1)(1-x)^(n)dx`

B

`underset(1)overset(2)intx^(n)(x-1)^(n-1)dx`

C

`underset(1)overset(2)int(1+x)^(n)dx`

D

`underset(0)overset(1)int(1-x)^(n)x^(n-1)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{{nC_0}}{n} + \frac{{nC_1}}{n+1} + \frac{{nC_2}}{n+2} + \ldots + \frac{{nC_n}}{2n} \] ### Step 1: Understand the Binomial Expansion The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} nC_k \cdot x^k \] This means that the coefficients \(nC_k\) represent the number of ways to choose \(k\) items from \(n\). **Hint:** Recall the binomial expansion and how coefficients are derived. ### Step 2: Multiply by \(x^{n-1}\) We multiply both sides of the binomial expansion by \(x^{n-1}\): \[ x^{n-1} (1 + x)^n = \sum_{k=0}^{n} nC_k \cdot x^{k + n - 1} \] This gives us: \[ x^{n-1} (1 + x)^n = nC_0 \cdot x^{n-1} + nC_1 \cdot x^n + nC_2 \cdot x^{n+1} + \ldots + nC_n \cdot x^{2n-1} \] **Hint:** Understand how multiplying by \(x^{n-1}\) shifts the powers of \(x\). ### Step 3: Integrate Both Sides Now, we integrate both sides with respect to \(x\): \[ \int x^{n-1} (1 + x)^n \, dx = \int \left(nC_0 \cdot x^{n-1} + nC_1 \cdot x^n + nC_2 \cdot x^{n+1} + \ldots + nC_n \cdot x^{2n-1}\right) \, dx \] **Hint:** Remember that integration will increase the power of \(x\) by 1 and divide by the new power. ### Step 4: Evaluate the Integral We evaluate the left-hand side from 0 to 1: \[ \int_0^1 x^{n-1} (1 + x)^n \, dx \] And for the right-hand side, we evaluate each term: \[ \int_0^1 nC_k \cdot x^{k+n-1} \, dx = nC_k \cdot \frac{1}{k+n} \] So, the right-hand side becomes: \[ \sum_{k=0}^{n} nC_k \cdot \frac{1}{k+n} \] **Hint:** Be careful with the limits of integration and how they affect the terms. ### Step 5: Combine Results After integrating, we find that: \[ \int_0^1 x^{n-1} (1 + x)^n \, dx = \sum_{k=0}^{n} \frac{nC_k}{k+n} \] This matches the original expression we started with. **Hint:** Make sure to check that both sides of the equation are equal after integration. ### Conclusion Thus, the value of the given expression is equal to: \[ \int_0^1 x^{n-1} (1 + x)^n \, dx \] Upon checking the options, we find that the correct answer is: **(a)** \(\int_0^1 x^{n-1} (1+x)^n \, dx\)

To solve the problem, we need to evaluate the expression: \[ \frac{{nC_0}}{n} + \frac{{nC_1}}{n+1} + \frac{{nC_2}}{n+2} + \ldots + \frac{{nC_n}}{2n} \] ### Step 1: Understand the Binomial Expansion The binomial theorem states that: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

Evaluate : intx^(2n-1)sin(x^(n))dx

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

Find the underset(k=1)overset(oo)sumunderset(n=1)overset(oo)sumk/(2^(n+k)) .

underset(r=1)overset(n)(sum)r(.^(n)C_(r)-.^(n)C_(r-1)) is equal to

The value of cot (underset(n=1)overset(23)sum cot^(-1) (1 + underset(k=1)overset(n)sum 2k)) is

Suppose for every integer n, . underset(n)overset(n+1)intf(x)dx = n^(2) . The value of underset(-2)overset(4)intf(x)dx is :

If I_(1)=int_(0)^(oo) (dx)/(1+x^(4))dx and I_(2)=underset(0)overset(oo)int x^(2)(dx)/(1+x^(4))"then"n (I_(1))/(I_(2))=

If (1+a)^(n)=.^(n)C_(0)+.^(n)C_(1)a+.^(n)C_(2)a^(2)+ . . +.^(n)C_(n)a^(n) , then prove that .^(n)C_(1)+2.^(n)C_(2)+3.^(n)3C_(3)+ . . .+n.^(n)C_(n)=n.2^(n-1) .

Prove that underset(rles)(underset(r=0)overset(s)(sum)underset(s=1)overset(n)(sum))""^(n)C_(s) ""^(s)C_(r)=3^(n)-1 .

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If a, b and c are three consecutive coefficients terms in the expansio...

    Text Solution

    |

  2. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  3. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  4. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  5. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  6. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  7. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  8. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  9. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  10. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  11. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  12. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  13. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  14. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  15. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  16. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  17. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  18. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  19. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  20. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |