Home
Class 12
MATHS
The value of sum(r=1)^(n) (-1)^(r+1)(""^...

The value of `sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1)` is equal to

A

(a) `-1/(n+1)`

B

(b) `-(1)/(n)`

C

(c) `(1)/(n+1)`

D

(d) `(n)/(n+1)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the summation: \[ S = \sum_{r=1}^{n} (-1)^{r+1} \frac{\binom{n}{r}}{r+1} \] ### Step 1: Rewrite the Summation We can rewrite the summation \( S \) as: \[ S = \sum_{r=1}^{n} \frac{(-1)^{r+1}}{r+1} \binom{n}{r} \] ### Step 2: Use the Binomial Theorem Recall that the Binomial Theorem states: \[ (1 - x)^n = \sum_{r=0}^{n} \binom{n}{r} (-x)^r \] ### Step 3: Integrate Both Sides Integrate both sides with respect to \( x \): \[ \int (1 - x)^n \, dx = \int \sum_{r=0}^{n} \binom{n}{r} (-x)^r \, dx \] The left-hand side becomes: \[ -\frac{(1-x)^{n+1}}{n+1} + C \] The right-hand side becomes: \[ \sum_{r=0}^{n} \binom{n}{r} \frac{(-x)^{r+1}}{r+1} + C \] ### Step 4: Evaluate the Integral from 0 to 1 Evaluate the integral from \( 0 \) to \( 1 \): \[ \int_0^1 (1 - x)^n \, dx = \left[-\frac{(1-x)^{n+1}}{n+1}\right]_0^1 = \frac{1}{n+1} \] ### Step 5: Interchange Summation and Integration Interchange the summation and integration: \[ \sum_{r=0}^{n} \binom{n}{r} \frac{(-1)^{r+1}}{r+1} = \frac{1}{n+1} \] ### Step 6: Separate the r=0 Term Separate the term for \( r=0 \): \[ \binom{n}{0} \frac{(-1)^{0+1}}{0+1} + \sum_{r=1}^{n} \binom{n}{r} \frac{(-1)^{r+1}}{r+1} = 1 + S \] ### Step 7: Solve for S Now we have: \[ 1 + S = \frac{1}{n+1} \] Thus, \[ S = \frac{1}{n+1} - 1 = \frac{1 - (n+1)}{n+1} = \frac{-n}{n+1} \] ### Step 8: Final Result Therefore, the value of the summation is: \[ S = \frac{n}{n+1} \]

To solve the problem, we need to evaluate the summation: \[ S = \sum_{r=1}^{n} (-1)^{r+1} \frac{\binom{n}{r}}{r+1} \] ### Step 1: Rewrite the Summation We can rewrite the summation \( S \) as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

sum_(r=1)^(n) (-1)^(r-1) ""^nC_r(a - r) =

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The sum of the series sum_(r=1)^(n) (-1)^(r-1).""^(n)C_(r)(a-r), n gt 1 is equal to :

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is (a) 1/(n+1) (b) 1/n (c) 1/(n-1) (d) 0

If n in N, then sum_(r=0)^(n) (-1)^(n) (""^(n)C_(r))/(""^(r+2)C_(r)) is equal to .

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. Which term in the expansion of (2-3x)^(19) has algebrically the last c...

    Text Solution

    |

  2. The value of (.^(n)C(0))/(n)+(.^(n)C(1))/(n+1)+(.^(n)C(2))/(n+2)+"..."...

    Text Solution

    |

  3. The value of sum(r=1)^(n) (-1)^(r+1)(""^(n)C(r))/(r+1) is equal to

    Text Solution

    |

  4. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  5. The value of underset(r=0)overset(3)sum.^(8)C(r)(.^(5)C(r+1)-.^(4)C(r)...

    Text Solution

    |

  6. Find underset(r=0) overset(10)sumr^ (10)C(r).3^(r).(-2)^(10-r)

    Text Solution

    |

  7. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  8. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  9. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  10. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  11. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  12. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  13. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  14. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  15. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  16. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  17. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  18. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  19. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  20. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |