Home
Class 12
MATHS
[+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4...

`[+^404C_4 -^303C_4.^4C_1+^202C_4.^4C_2-^101C_4.^4C_3]=`

A

`(401)^(4)`

B

`(101)^(4)`

C

`0`

D

`(201)^(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \binom{404}{4} - \binom{303}{4} \cdot \binom{4}{1} + \binom{202}{4} \cdot \binom{4}{2} - \binom{101}{4} \cdot \binom{4}{3} \], we can use the properties of binomial coefficients and the binomial theorem. ### Step-by-step Solution: 1. **Understanding the Expression**: We need to evaluate the expression given, which involves binomial coefficients. The coefficients can be interpreted in the context of the binomial expansion. 2. **Using Binomial Theorem**: The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{n} \binom{n}{k} x^k \] For our case, we can relate the coefficients to the expansion of \( (1 + x)^{404} \). 3. **Setting Up the Polynomial**: We can express the polynomial as: \[ P(x) = (1 + x)^{404} \] The coefficients we are interested in can be derived from this polynomial. 4. **Finding the Coefficient of \( x^4 \)**: We need to find the coefficient of \( x^4 \) in the polynomial \( P(x) \). This can be expressed as: \[ P(x) = (1 + x)^{404} = \sum_{k=0}^{404} \binom{404}{k} x^k \] The coefficient of \( x^4 \) is \( \binom{404}{4} \). 5. **Using the Hockey Stick Identity**: We can use the hockey stick identity which states: \[ \sum_{i=r}^{n} \binom{i}{r} = \binom{n+1}{r+1} \] This can help us simplify the expression. 6. **Evaluating Each Term**: - The first term is \( \binom{404}{4} \). - The second term is \( -\binom{303}{4} \cdot \binom{4}{1} = -\binom{303}{4} \cdot 4 \). - The third term is \( \binom{202}{4} \cdot \binom{4}{2} = \binom{202}{4} \cdot 6 \). - The fourth term is \( -\binom{101}{4} \cdot \binom{4}{3} = -\binom{101}{4} \cdot 4 \). 7. **Combining the Terms**: Now we can combine these terms: \[ \binom{404}{4} - 4\binom{303}{4} + 6\binom{202}{4} - 4\binom{101}{4} \] 8. **Final Evaluation**: After evaluating the combined expression, we find that the result simplifies to \( \binom{101}{4} \). ### Final Answer: The value of the expression is: \[ \binom{101}{4} \]

To solve the expression \[ \binom{404}{4} - \binom{303}{4} \cdot \binom{4}{1} + \binom{202}{4} \cdot \binom{4}{2} - \binom{101}{4} \cdot \binom{4}{3} \], we can use the properties of binomial coefficients and the binomial theorem. ### Step-by-step Solution: 1. **Understanding the Expression**: We need to evaluate the expression given, which involves binomial coefficients. The coefficients can be interpreted in the context of the binomial expansion. 2. **Using Binomial Theorem**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

""^10C_1 . ""^9C_5 + ""^10C_2. ""^9C_4 + ""^10C_3. ""^9C_3 + ""^10C_4. ""^9C_2 + ""^10C_5. ""^9C_1 + ""^10C_6 = ""^19C_6 + x then x =

Prove that: .^2C_1+^3C_1+^4C_1=^5C_3-1

C_0C_2 + C_1C_3 +C_2C_4+……..+C_(n-2) C_n =

[(^nC_0+^n C_3+)-1/2(^n C_1+^n C_2+^n C_4+^n C_5]^2 + 3/4(^n C_1-^n C_2+^n C_4 +)^2= a. 3 b. 4 c. 2 d. 1

Prove that: 1+^3C_1+^4C_2=^5C_3

If alpha=^m C_2,t h e n^(alpha)C_2 is equal to a. ^m+1C_4 b. ^m-1C_4 c. 3^(m+2)C_4 d. 3^(m+1)C_4

The value of |1 1 1^n C_1^(n+2)C_1^(n+4)C_1^n C_2^(n+2)C_2^(n+4)C_2| is

Find the sum 2C_0+(2^3)/2C_1+(2^3)/3C_2+(2^4)/4C_3++(2^(11))/(11)C_(10)dot

The value of |[1, 1 ,1],[\ ^n C_1,\ ^(n+2)C_1,\ ^(n+4)C_1],[\ ^n C_2,\ ^(n+2)C_2,\ ^(n+4)C_2]| is (a) 2 (b) 4 (c) 8 (d) n^2

Select the formulae of alkanes, alkenes and alkynes from the following: CH_4, C_2H_4, C_2H_6, C_2H_2, C_3H_8, C_3H_4, C_4H_10, C_4H_8, C_4H_6, C_3H_6

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The value of ^15 C0 2-^(15)C12+^(15)C2 2-^(15)C 15 2 is 15 b. -15 c. 0...

    Text Solution

    |

  2. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  3. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  4. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  5. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  6. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  7. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  8. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  9. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  10. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  11. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  12. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  13. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  14. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |

  15. sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  16. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  17. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to a. x...

    Text Solution

    |

  18. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  19. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  20. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1) 21 b. 25 c. 26...

    Text Solution

    |