Home
Class 12
MATHS
The value of sum(r=0)^(40) r""^(40)C(r)"...

The value of `sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r)` is (a) `40.^(69)C_(29)` (b) `40.^(70)C_(30)` (c) `.^(60)C_(29)` (d) `.^(70)C_(30)`

A

`40.^(69)C_(29)`

B

`40.^(70)C_(30)`

C

`.^(60)C_(29)`

D

`.^(70)C_(30)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the sum: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} \] ### Step 1: Rewrite the term \( r \cdot \binom{40}{r} \) We can express \( r \cdot \binom{40}{r} \) in terms of binomial coefficients. Recall that: \[ r \cdot \binom{n}{r} = n \cdot \binom{n-1}{r-1} \] Applying this to our case: \[ r \cdot \binom{40}{r} = 40 \cdot \binom{39}{r-1} \] ### Step 2: Substitute into the sum Now we substitute this back into our summation: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} = \sum_{r=0}^{40} 40 \cdot \binom{39}{r-1} \cdot \binom{30}{r} \] ### Step 3: Change the index of summation To simplify the summation, we change the index of summation by letting \( k = r - 1 \). Then when \( r = 0 \), \( k = -1 \) (which we can ignore since \( \binom{39}{-1} = 0 \)), and when \( r = 40 \), \( k = 39 \). Thus, we can rewrite the sum as: \[ 40 \cdot \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{k+1} \] ### Step 4: Use the Vandermonde Identity The sum \( \sum_{k=0}^{n} \binom{m}{k} \cdot \binom{n}{r-k} = \binom{m+n}{r} \) can be applied here. In our case, we have: \[ \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{k+1} = \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{30-(k+1)} = \sum_{k=0}^{39} \binom{39}{k} \cdot \binom{30}{29-k} \] This is equivalent to: \[ \binom{39 + 30}{30} = \binom{69}{30} \] ### Step 5: Final expression Now substituting this back into our expression, we have: \[ 40 \cdot \binom{69}{30} \] ### Conclusion Thus, the value of the original sum is: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} = 40 \cdot \binom{69}{30} \] The correct answer is: (b) \( 40 \cdot \binom{70}{30} \)

To solve the problem, we need to evaluate the sum: \[ \sum_{r=0}^{40} r \cdot \binom{40}{r} \cdot \binom{30}{r} \] ### Step 1: Rewrite the term \( r \cdot \binom{40}{r} \) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of underset(r=0)overset(40)sumr.^(40)C_(r).^(30)C_(r) is

The value of sum_(r=0)^50 (.^(100)C_r.^(200)C_(150+r)) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If (1+x)^n=C0+C1x+C2x^2+...+Cn x^n , then C0C2+C1C3+C2C4+...+C(n-2)Cn=...

    Text Solution

    |

  2. [+^404C4 -^303C4.^4C1+^202C4.^4C2-^101C4.^4C3]=

    Text Solution

    |

  3. The value of sum(r=0)^(40) r""^(40)C(r)""^(30)C(r) is (a) 40.^(69)C(29...

    Text Solution

    |

  4. The value of sum(r=1)^(15) (r2^(r))/((r+2)!) is equal to (a) ((17)!-2...

    Text Solution

    |

  5. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  6. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  7. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  8. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  9. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  10. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  11. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  12. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  13. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |

  14. sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  15. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  16. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to a. x...

    Text Solution

    |

  17. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  18. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  19. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1) 21 b. 25 c. 26...

    Text Solution

    |

  20. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |