Home
Class 12
MATHS
If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r ...

If `(1+x^(2))^(n) =sum_(r=0)^(n) a_(r)x^(r )= (1+x+x^(2)+x^(3))^(100)`. If `a = sum_(r=0)^(300)a_(r)`, then `sum_(r=0)^(300) ra_(r)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sum_{r=0}^{300} r a_r \) given that \( (1+x^2)^n = \sum_{r=0}^{n} a_r x^r = (1+x+x^2+x^3)^{100} \). ### Step 1: Understanding the Given Expression We have: \[ (1+x^2)^n = (1+x+x^2+x^3)^{100} \] This means that the coefficients \( a_r \) in the expansion of \( (1+x^2)^n \) are equal to the coefficients of \( x^r \) in the expansion of \( (1+x+x^2+x^3)^{100} \). ### Step 2: Finding \( a \) We need to find: \[ a = \sum_{r=0}^{300} a_r \] To find \( a \), we can substitute \( x = 1 \) in the expression: \[ (1 + 1 + 1 + 1)^{100} = 4^{100} \] Thus, we have: \[ a = 4^{100} \] ### Step 3: Finding \( \sum_{r=0}^{300} r a_r \) We want to find: \[ \sum_{r=0}^{300} r a_r \] To do this, we differentiate the generating function: \[ \sum_{r=0}^{300} a_r x^r = (1+x+x^2+x^3)^{100} \] Differentiating both sides with respect to \( x \): \[ \sum_{r=0}^{300} r a_r x^{r-1} = 100(1+x+x^2+x^3)^{99}(1 + 2x + 3x^2) \] Now, we substitute \( x = 1 \): \[ \sum_{r=0}^{300} r a_r = 100(1+1+1+1)^{99}(1 + 2 + 3) = 100 \cdot 4^{99} \cdot 6 \] ### Step 4: Simplifying the Expression We can simplify this: \[ \sum_{r=0}^{300} r a_r = 600 \cdot 4^{99} \] ### Step 5: Expressing in Terms of \( a \) Since \( a = 4^{100} \), we can express \( 4^{99} \) as: \[ 4^{99} = \frac{a}{4} \] Thus: \[ \sum_{r=0}^{300} r a_r = 600 \cdot \frac{a}{4} = 150a \] ### Final Answer The final result is: \[ \sum_{r=0}^{300} r a_r = 150a \]

To solve the problem, we need to find the value of \( \sum_{r=0}^{300} r a_r \) given that \( (1+x^2)^n = \sum_{r=0}^{n} a_r x^r = (1+x+x^2+x^3)^{100} \). ### Step 1: Understanding the Given Expression We have: \[ (1+x^2)^n = (1+x+x^2+x^3)^{100} \] This means that the coefficients \( a_r \) in the expansion of \( (1+x^2)^n \) are equal to the coefficients of \( x^r \) in the expansion of \( (1+x+x^2+x^3)^{100} \). ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

Let (1 + x + x^(2))^(n) = sum_(r=0)^(2n) a_(r) x^(r) . If sum_(r=0)^(2n)(1)/(a_(r))= alpha , then sum_(r=0)^(2n) (r)/(a_(r)) =

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

If a_n=sum_(r=0)^n1/(nC_r), then sum_(r=0)^n r/(nC_r) equals

If (1+x+x^2+x^3)^n=sum_(r=0)^(3n)b_r x^r and sum_(r=0)^(3n)b_r=k ,"t h e n"sum_(r=0)^(3n)r b_r is

If ninN,ngt4 and (1-x^(3))^(n)=sum_(r=0)^(n)a_(r)x^(r)(1-x)^(3n-2r) , then sum_(r=0)^(n)a_(r)=lambda^(n) , find lambda .

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If S_(n)=sum_(r=1)^(n) a_(r)=(1)/(6)n(2n^(2)+9n+13) , then sum_(r=1)^(n)sqrt(a_(r)) equals

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

Find the sum sum_(r=0)^n^(n+r)C_r .

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. (n+2)C0(2^(n+1))-(n+1)C1(2^(n))+(n)C2(2^(n-1))-.... is equal to

    Text Solution

    |

  2. The value of sum(r=0)^(20)(-1)^(r )(""^(50)C(r))/(r+2) is equal to

    Text Solution

    |

  3. If (1+x^(2))^(n) =sum(r=0)^(n) a(r)x^(r )= (1+x+x^(2)+x^(3))^(100). If...

    Text Solution

    |

  4. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  5. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  6. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  7. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  8. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  9. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |

  10. sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  11. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  12. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to a. x...

    Text Solution

    |

  13. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  14. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  15. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1) 21 b. 25 c. 26...

    Text Solution

    |

  16. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |

  17. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  18. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  19. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  20. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |