Home
Class 12
MATHS
If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""...

If `f(x) = ""^(40)C_(1).x(1-x)^(39) + 2.""^(40)C_(2).x^(2)(1-x)^(38)+3.""^(40)C_(3).x^(3)(1-x)^(37)+``"….."+40.""^(40)C_(40).x^(40)`, then the value of `f(3)` is

A

a. 120

B

b. 150

C

c. 200

D

d. 240

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the function \( f(x) \) defined as: \[ f(x) = \sum_{r=1}^{40} r \cdot \binom{40}{r} x^r (1-x)^{40-r} \] ### Step 1: Write the general term The general term \( T_r \) of the series can be expressed as: \[ T_r = r \cdot \binom{40}{r} x^r (1-x)^{40-r} \] ### Step 2: Simplify the general term Using the property of binomial coefficients, we can rewrite \( T_r \): \[ T_r = r \cdot \frac{40!}{r!(40-r)!} x^r (1-x)^{40-r} \] This simplifies to: \[ T_r = \frac{40!}{(r-1)!(40-r)!} x^r (1-x)^{40-r} = 40 \cdot \binom{39}{r-1} x^r (1-x)^{40-r} \] ### Step 3: Factor out constants Now, we can factor out the constant \( 40 \) from the summation: \[ f(x) = 40 \sum_{r=1}^{40} \binom{39}{r-1} x^r (1-x)^{40-r} \] ### Step 4: Change the index of summation Let \( k = r - 1 \). Then, when \( r = 1 \), \( k = 0 \) and when \( r = 40 \), \( k = 39 \). Thus, we can rewrite the summation: \[ f(x) = 40 \sum_{k=0}^{39} \binom{39}{k} x^{k+1} (1-x)^{39-k} \] ### Step 5: Factor out \( x \) We can factor out \( x \) from the summation: \[ f(x) = 40x \sum_{k=0}^{39} \binom{39}{k} x^k (1-x)^{39-k} \] ### Step 6: Apply the binomial theorem Using the binomial theorem, we know that: \[ \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} = (a + b)^n \] In our case, \( a = x \) and \( b = 1-x \), so: \[ \sum_{k=0}^{39} \binom{39}{k} x^k (1-x)^{39-k} = (x + (1-x))^{39} = 1^{39} = 1 \] ### Step 7: Final expression for \( f(x) \) Thus, we have: \[ f(x) = 40x \cdot 1 = 40x \] ### Step 8: Calculate \( f(3) \) Now, we need to find \( f(3) \): \[ f(3) = 40 \cdot 3 = 120 \] ### Conclusion The value of \( f(3) \) is \( 120 \).

To solve the problem, we need to find the value of the function \( f(x) \) defined as: \[ f(x) = \sum_{r=1}^{40} r \cdot \binom{40}{r} x^r (1-x)^{40-r} \] ### Step 1: Write the general term The general term \( T_r \) of the series can be expressed as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

The value of ""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40) is equal to "____" .

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

"If " int e^(x^(3)+x^(2)-1)(3x^(4)+2x^(3)+2x)dx=f(x)+C, " then the value of " f(1)xxf(-1) " is"-.

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3+...+a_(40)x^(40), then find the value of a_1+a_3+a_5+...+a_(39)dot

Evaluate |{:(.^(x)C_(1),,.^(x)C_(2),,.^(x)C_(3)),(.^(y)C_(1),,.^(y)C_(2),,.^(y)C_(3)),(.^(x)C_(1),,.^(z)C_(2),,.^(z)C_(3)):}|

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If (1+x^(2))^(n) = underset(r=0)overset(n)suma(r)x^(r )= (1+x+x^(2)+x^...

    Text Solution

    |

  2. The value of sum(r=0)^(20)r(20-r)(^(20)Cr)^2 is equal to 400^(39)C(20)...

    Text Solution

    |

  3. If f(x) = ""^(40)C(1).x(1-x)^(39) + 2.""^(40)C(2).x^(2)(1-x)^(38)+3.""...

    Text Solution

    |

  4. Find the value of underset(0leiltjlen)(sumsum)(1+j)(.^(n)C(i)+.^(n)C(...

    Text Solution

    |

  5. In the expansion of [(1+x)//(1-x)]^2, the coefficient of x^n will be a...

    Text Solution

    |

  6. The sum of 1+n(1-1/x)+(n(n+1))/(2!)(1-1/x)^2+oo will be a. x^n b. x^(-...

    Text Solution

    |

  7. sum(k=1)^ook(1-1/n)^(k-1)=>? a.n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

    Text Solution

    |

  8. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  9. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to a. x...

    Text Solution

    |

  10. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  11. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  12. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1) 21 b. 25 c. 26...

    Text Solution

    |

  13. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |

  14. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  15. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  16. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  17. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |

  18. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to (...

    Text Solution

    |

  19. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  20. The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (...

    Text Solution

    |