Home
Class 12
MATHS
1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8x...

`1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….."` is equal to

A

a. `sqrt(2)`

B

b. `(1)/(sqrt(2))`

C

c. `sqrt(3)`

D

d. `(1)/(sqrt(3))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the series \( S = 1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + \ldots \) step by step, we can relate it to the binomial theorem. ### Step 1: Identify the series We can express the series as: \[ S = 1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \ldots \] This series can be recognized as a form of the binomial expansion. ### Step 2: Relate to the binomial theorem The binomial theorem states that: \[ (1 + x)^n = \sum_{k=0}^{\infty} \binom{n}{k} x^k \] where \( \binom{n}{k} = \frac{n(n-1)(n-2)\ldots(n-k+1)}{k!} \). ### Step 3: Identify \( n \) and \( x \) We can compare our series with the binomial expansion. The first term is 1, which matches. The second term is \( \frac{1}{4} \), which corresponds to \( nx \). Thus, we have: \[ nx = \frac{1}{4} \] ### Step 4: Find the next term The next term in our series is \( \frac{1 \cdot 3}{4 \cdot 8} \). We can express this as: \[ \frac{n(n-1)}{2} x^2 = \frac{3}{32} \] From the previous step, we have \( nx = \frac{1}{4} \). Squaring this gives: \[ n^2 x^2 = \left(\frac{1}{4}\right)^2 = \frac{1}{16} \] ### Step 5: Substitute and simplify Now substituting \( x^2 \) into the equation for the next term: \[ \frac{n(n-1)}{2} \cdot \frac{1}{16} = \frac{3}{32} \] Multiplying both sides by 32: \[ 16n(n-1) = 3 \] This simplifies to: \[ n(n-1) = \frac{3}{16} \] ### Step 6: Solve for \( n \) We can rearrange this to form a quadratic equation: \[ n^2 - n - \frac{3}{16} = 0 \] Using the quadratic formula: \[ n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{1 \pm \sqrt{1 + \frac{12}{16}}}{2} = \frac{1 \pm \sqrt{\frac{28}{16}}}{2} = \frac{1 \pm \frac{\sqrt{7}}{2}}{2} \] This gives: \[ n = \frac{1 + \sqrt{7}/2}{2} \quad \text{or} \quad n = \frac{1 - \sqrt{7}/2}{2} \] ### Step 7: Find \( x \) From \( nx = \frac{1}{4} \), we can find \( x \): \[ x = \frac{1}{4n} \] ### Step 8: Substitute back into the series Now substituting \( n \) and \( x \) back into the binomial expansion gives us the value of the series: \[ S = (1 + x)^n \] ### Step 9: Calculate \( S \) Substituting the values of \( n \) and \( x \) into the expression gives us: \[ S = \left(1 - \frac{1}{2}\right)^{-1/2} = 2^{1/2} = \sqrt{2} \] ### Final Result Thus, the value of the series is: \[ \sqrt{2} \]

To solve the series \( S = 1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + \ldots \) step by step, we can relate it to the binomial theorem. ### Step 1: Identify the series We can express the series as: \[ S = 1 + \frac{1}{4} + \frac{1 \cdot 3}{4 \cdot 8} + \frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12} + \ldots \] This series can be recognized as a form of the binomial expansion. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

( 7) xx(-5)xx(-8)xx(-1)

( 7) xx(-5)xx(-8)xx(-1)

( 7) xx(-5)xx(-8)xx(-1)

( 7) xx(-5)xx(-8)xx(-1)

1/3xx1/4xx1/3xx1/3

Find the sum 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+

Find the sum: 1-1/8+1/8xx3/(16)-(1xx3xx5)/(8xx16xx24)+...

Observe the following pattern (1xx2)+(2xx3)=(2xx3xx4)/3, (1xx2)+(2xx3)+(3xx4)=(3xx4xx5)/3, (1xx2)+(2xx3)+(3xx4)+(4xx5)=(4xx5xx6)/3 and find the value of \ (1xx2)+(2xx3)+(3xx4)+(4xx5)+(5xx6)

(-1)xx(-2)xx(-3)xx(-4)xx-5

(-1)xx(-5)xx(-4)xx(-6)

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. The coefficient of x^4 in the expansion of {sqrt(1+x^2)-x}^(-1) in asc...

    Text Solution

    |

  2. 1+1/3x+(1xx4)/(3xx6)x^2+(1xx4xx7)/(3xx6xx9)x^3+------ is equal to a. x...

    Text Solution

    |

  3. 1+1/4 + (1xx3)/(4xx8) + (1xx3xx5)/(4xx8xx12) + "….." is equal to

    Text Solution

    |

  4. If |x|<1,then 1+n((2x)/(1+x))+(n(n+1))/(2!)((2x)/(1+x))^2+...... is eq...

    Text Solution

    |

  5. The coefficient of x^5in(1+2x+3x^2+)^(-3//2)i s(|x|<1) 21 b. 25 c. 26...

    Text Solution

    |

  6. If |x|<1, then the coefficient of x^n in expansion of (1+x+x^2+x^3+)^2...

    Text Solution

    |

  7. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  8. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  9. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  10. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |

  11. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to (...

    Text Solution

    |

  12. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  13. The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (...

    Text Solution

    |

  14. The 13^(th) term in the expanion of (x^(2)+2//x)^(n) is independent of...

    Text Solution

    |

  15. Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002)...

    Text Solution

    |

  16. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |

  17. If p^(4)+q^(3)=2(p gt 0, q gt 0), then the maximum value of term indep...

    Text Solution

    |

  18. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  19. Find the coefficient of t^8 in the expansion of (1+2t^2-t^3)^9.

    Text Solution

    |

  20. The term idependent of 'x' in the expansion of (9x-(1)/(3sqrt(x)))^(18...

    Text Solution

    |