Home
Class 12
MATHS
If the expansion in power of x of the fu...

If the expansion in power of x of the function
`(1)/(( 1 - ax)(1 - bx))` is `a_(0) + a_(1) x + a_(2) x^(2) + a_(3) x^(3) + …, ` then `a_(n)` is

A

`(b^(n)-a^(n))/(b-a)`

B

`(a^(n)-b^(n))/(b-a)`

C

`(a^(n+1)-b^(n+1))/(b-a)`

D

`(b^(n+1) - a^(n+1))/(b-a)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the coefficient \( a_n \) in the expansion of the function \[ \frac{1}{(1 - ax)(1 - bx)}, \] we can follow these steps: ### Step 1: Expand Each Factor We know that the geometric series expansion for \( \frac{1}{1 - kx} \) is given by: \[ \frac{1}{1 - kx} = \sum_{r=0}^{\infty} k^r x^r \] Applying this to our function, we can write: \[ \frac{1}{1 - ax} = \sum_{r=0}^{\infty} a^r x^r \] and \[ \frac{1}{1 - bx} = \sum_{s=0}^{\infty} b^s x^s. \] ### Step 2: Multiply the Series Now, we multiply these two series together: \[ \frac{1}{(1 - ax)(1 - bx)} = \left( \sum_{r=0}^{\infty} a^r x^r \right) \left( \sum_{s=0}^{\infty} b^s x^s \right). \] ### Step 3: Find the Coefficient of \( x^n \) The coefficient \( a_n \) of \( x^n \) in the product can be found using the Cauchy product formula. The coefficient of \( x^n \) is given by: \[ a_n = \sum_{k=0}^{n} a^k b^{n-k}. \] This is because we can choose \( k \) terms from the first series and \( n-k \) terms from the second series. ### Step 4: Recognize the Sum as a Finite Geometric Series The expression \( a_n = \sum_{k=0}^{n} a^k b^{n-k} \) can be rewritten as: \[ a_n = b^n \sum_{k=0}^{n} \left( \frac{a}{b} \right)^k. \] This is a geometric series with \( n+1 \) terms, first term \( 1 \), and common ratio \( \frac{a}{b} \). ### Step 5: Apply the Formula for the Sum of a Geometric Series The sum of a geometric series is given by: \[ \sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r} \quad \text{for } r \neq 1. \] Applying this, we have: \[ \sum_{k=0}^{n} \left( \frac{a}{b} \right)^k = \frac{1 - \left( \frac{a}{b} \right)^{n+1}}{1 - \frac{a}{b}} = \frac{1 - \left( \frac{a^{n+1}}{b^{n+1}} \right)}{\frac{b - a}{b}} = \frac{b}{b - a} \left( 1 - \frac{a^{n+1}}{b^{n+1}} \right). \] ### Step 6: Substitute Back into the Expression for \( a_n \) Thus, we can substitute this back into our expression for \( a_n \): \[ a_n = b^n \cdot \frac{b}{b - a} \left( 1 - \frac{a^{n+1}}{b^{n+1}} \right). \] ### Step 7: Simplify the Expression This simplifies to: \[ a_n = \frac{b^{n+1} - a^{n+1}}{b - a}. \] ### Final Result Thus, the coefficient \( a_n \) is given by: \[ a_n = \frac{b^{n+1} - a^{n+1}}{b - a}. \]

To find the coefficient \( a_n \) in the expansion of the function \[ \frac{1}{(1 - ax)(1 - bx)}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

If log (1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3)+… then a_(3)+a_(6)+a_(9)+.. is equal to

If log(1-x+x^(2))=a_(1)x+a_(2)x^(2)+a_(3)x^(3) +…and n is not a mutiple of 3 then a_(n) is equal to

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , then sum_(r=1)^(50) a_(r) equal to

If a_(0), a_(1), a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that a_(0) a_(2) - a_(1) a_(3) + a_(2) a_(4) - …+ a_(2n-2) a_(2n)= a_(n+1) .

If a_(0), a_(1),a_(2),… are the coefficients in the expansion of (1 + x + x^(2))^(n) in ascending powers of x, prove that if E_(1) = a_(0) + a_(3) + a_(6) + …, E_(2) = a_(1) + a_(4) + a_(7) + … and E_(3) = a_(2) + a_(5) + a_(8) + ..." then " E_(1) = E_(2) = E_(3) = 3^(n-1)

If |(1 +ax,1 +bx,1 + bx),(1 +a_(1) x,1 +b_(1) x,1 + c_(1) x),(1 + a_(2) x,1 + b_(2) x,1 + c_(2) x)| = A_(0) + A_(1) x + A_(2) x^(2) + A_(3) x^(3) , then A_(1) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If x is positive, the first negative term in the expansion of (1+x)^(2...

    Text Solution

    |

  2. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  3. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  4. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |

  5. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to (...

    Text Solution

    |

  6. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  7. The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (...

    Text Solution

    |

  8. The 13^(th) term in the expanion of (x^(2)+2//x)^(n) is independent of...

    Text Solution

    |

  9. Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002)...

    Text Solution

    |

  10. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |

  11. If p^(4)+q^(3)=2(p gt 0, q gt 0), then the maximum value of term indep...

    Text Solution

    |

  12. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  13. Find the coefficient of t^8 in the expansion of (1+2t^2-t^3)^9.

    Text Solution

    |

  14. The term idependent of 'x' in the expansion of (9x-(1)/(3sqrt(x)))^(18...

    Text Solution

    |

  15. In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16), if l(1) is ...

    Text Solution

    |

  16. If A(i,j) be the coefficient of a^i b^j c^(2010-i-j) in the expansion ...

    Text Solution

    |

  17. The coefficient of x^(301 ub the expansion of (1+x)^(500)+x(1+x)^(499)...

    Text Solution

    |

  18. The coefficient of x^70 in the product (x-1)(x^2-2)(x^3-3)....(x^12-12...

    Text Solution

    |

  19. Given (1-x^(3))^(n)=sum(k=0)^(n)a(k)x^(k)(1-x)^(3n-2k) then the value ...

    Text Solution

    |

  20. Find the sum of the roots (real or complex) of the equation x^2001 + (...

    Text Solution

    |