Home
Class 12
MATHS
If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)...

If `(x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…."`, then `sum_(r=1)^(50) a_(r)` equal to

A

148

B

146

C

149

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given expression and find the coefficients \( a_r \) for the series expansion. Let's break it down step by step. ### Step 1: Rewrite the Expression We start with the expression: \[ \frac{x^2 + x + 1}{1 - x} \] We can separate the numerator: \[ \frac{x^2}{1 - x} + \frac{x}{1 - x} + \frac{1}{1 - x} \] ### Step 2: Expand Each Term Now, we will expand each term using the formula for the geometric series: \[ \frac{1}{1 - x} = \sum_{n=0}^{\infty} x^n \] Thus, we can write: 1. For \( \frac{1}{1 - x} \): \[ \frac{1}{1 - x} = 1 + x + x^2 + x^3 + \ldots \] 2. For \( \frac{x}{1 - x} \): \[ \frac{x}{1 - x} = x + x^2 + x^3 + \ldots \] 3. For \( \frac{x^2}{1 - x} \): \[ \frac{x^2}{1 - x} = x^2 + x^3 + x^4 + \ldots \] ### Step 3: Combine the Series Now, we combine all these series: \[ \frac{x^2 + x + 1}{1 - x} = (1 + x + x^2 + x^3 + \ldots) + (x + x^2 + x^3 + \ldots) + (x^2 + x^3 + \ldots) \] Combining like terms, we get: - The constant term \( a_0 = 1 \) - The coefficient of \( x \) (from \( 1 \) and \( x \)) gives \( a_1 = 2 \) - The coefficient of \( x^2 \) gives \( a_2 = 3 \) - The coefficient of \( x^3 \) gives \( a_3 = 3 \) - The coefficient of \( x^4 \) gives \( a_4 = 3 \) - For \( r \geq 3 \), \( a_r = 3 \) ### Step 4: Find the Sum \( \sum_{r=1}^{50} a_r \) Now we calculate the sum: \[ \sum_{r=1}^{50} a_r = a_1 + a_2 + a_3 + a_4 + \ldots + a_{50} \] Substituting the values we found: \[ = 2 + 3 + 3 + 3 + \ldots + 3 \] Here, \( a_3 \) to \( a_{50} \) are all equal to \( 3 \). There are \( 48 \) terms from \( a_3 \) to \( a_{50} \). Calculating the sum: \[ = 2 + 3 + 3 \times 48 \] \[ = 2 + 3 + 144 \] \[ = 2 + 147 = 149 \] ### Final Answer Thus, the value of \( \sum_{r=1}^{50} a_r \) is: \[ \boxed{149} \]

To solve the problem, we need to analyze the given expression and find the coefficients \( a_r \) for the series expansion. Let's break it down step by step. ### Step 1: Rewrite the Expression We start with the expression: \[ \frac{x^2 + x + 1}{1 - x} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 8.8|10 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (e^(x) -1)^(2) =a_0 +a_(1)x +a_(2) x^2 + ......oo then a_4 =

If log_(e )((1+x)/(1-x))=a_(0)+a_(1)x+a_(2)x^(2)+…oo then a_(1), a_(3), a_(5) are in

If (x^(2) + x)/(1-x) = a_(1) x + a_(2) x^(2) + ... to infty , |x| lt 1, then

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Let (1 + x^(2))^(2) (1 + x)^(n) = a_(0) + a_(1) x + a_(2) x^(2) + … if a_(1),a_(2) " and " a_(3) are in A.P , the value of n is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If |(1 +ax,1 +bx,1 + bx),(1 +a_(1) x,1 +b_(1) x,1 + c_(1) x),(1 + a_(2) x,1 + b_(2) x,1 + c_(2) x)| = A_(0) + A_(1) x + A_(2) x^(2) + A_(3) x^(3) , then A_(1) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Single Correct Answer
  1. If x is so small that x^3 and higher powers of x may be neglectd, then...

    Text Solution

    |

  2. If the expansion in power of x of the function (1)/(( 1 - ax)(1 - b...

    Text Solution

    |

  3. If (x^(2)+x+1)/(1-x) = a(0) + a(1)x+a(2)x^(2)+"….", then sum(r=1)^(50...

    Text Solution

    |

  4. If (1-x)^(-n)=a0+a1x+a2x^2++ar x^r+ ,t h e na0+a1+a2++ar is equal to (...

    Text Solution

    |

  5. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  6. The term independent of x in the product (4 + x + 7x^2)(x-3/x)^11 is (...

    Text Solution

    |

  7. The 13^(th) term in the expanion of (x^(2)+2//x)^(n) is independent of...

    Text Solution

    |

  8. Coefficient of x^(2009) in (1+x+x^(2)+x^(3)+x^(4))^(1001) (1-x)^(1002)...

    Text Solution

    |

  9. If the constant term in the binomial expansion of (x^2-1/x)^n ,n in N...

    Text Solution

    |

  10. If p^(4)+q^(3)=2(p gt 0, q gt 0), then the maximum value of term indep...

    Text Solution

    |

  11. In the expansion of (x^3-1/(x^2))^n ,n in N , if the sum of the coeff...

    Text Solution

    |

  12. Find the coefficient of t^8 in the expansion of (1+2t^2-t^3)^9.

    Text Solution

    |

  13. The term idependent of 'x' in the expansion of (9x-(1)/(3sqrt(x)))^(18...

    Text Solution

    |

  14. In the expansion of ((x)/(costheta)+(1)/(xsintheta))^(16), if l(1) is ...

    Text Solution

    |

  15. If A(i,j) be the coefficient of a^i b^j c^(2010-i-j) in the expansion ...

    Text Solution

    |

  16. The coefficient of x^(301 ub the expansion of (1+x)^(500)+x(1+x)^(499)...

    Text Solution

    |

  17. The coefficient of x^70 in the product (x-1)(x^2-2)(x^3-3)....(x^12-12...

    Text Solution

    |

  18. Given (1-x^(3))^(n)=sum(k=0)^(n)a(k)x^(k)(1-x)^(3n-2k) then the value ...

    Text Solution

    |

  19. Find the sum of the roots (real or complex) of the equation x^2001 + (...

    Text Solution

    |

  20. If the 4^(th) term of {sqrt(x^((1)/(1+log(10)x)))+root(12)(x)}^(6) is ...

    Text Solution

    |