Home
Class 12
MATHS
For which of the following values of x ,...

For which of the following values of `x ,5t h` term is the numerically greatest term in the expansion of `(1+x//3)^(10)` , a. -2 b. 1.8 c. `2` d. `-1. 9`

A

-2

B

1.8

C

2

D

-19

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x \) for which the 5th term is the numerically greatest term in the expansion of \( \left(1 + \frac{x}{3}\right)^{10} \), we can follow these steps: ### Step 1: Identify the general term The general term \( T_r \) in the expansion of \( (a + b)^n \) is given by: \[ T_r = \binom{n}{r-1} a^{n-(r-1)} b^{r-1} \] For our case: - \( a = 1 \) - \( b = \frac{x}{3} \) - \( n = 10 \) Thus, the \( r \)-th term is: \[ T_r = \binom{10}{r-1} \cdot 1^{10-(r-1)} \cdot \left(\frac{x}{3}\right)^{r-1} = \binom{10}{r-1} \cdot \left(\frac{x}{3}\right)^{r-1} \] ### Step 2: Find the 5th term The 5th term \( T_5 \) is: \[ T_5 = \binom{10}{4} \cdot \left(\frac{x}{3}\right)^{4} \] ### Step 3: Set up the conditions for the greatest term To find when \( T_5 \) is the greatest term, we need to compare it with the 4th term \( T_4 \) and the 6th term \( T_6 \). #### Condition 1: \( T_5 > T_4 \) \[ \frac{T_5}{T_4} > 1 \] Calculating \( T_4 \): \[ T_4 = \binom{10}{3} \cdot \left(\frac{x}{3}\right)^{3} \] Thus, \[ \frac{T_5}{T_4} = \frac{\binom{10}{4} \cdot \left(\frac{x}{3}\right)^{4}}{\binom{10}{3} \cdot \left(\frac{x}{3}\right)^{3}} = \frac{\binom{10}{4}}{\binom{10}{3}} \cdot \frac{x}{3} \] Using the property of binomial coefficients: \[ \frac{\binom{10}{4}}{\binom{10}{3}} = \frac{10-3}{4} = \frac{7}{4} \] So, \[ \frac{7}{4} \cdot \frac{x}{3} > 1 \implies \frac{7x}{12} > 1 \implies x > \frac{12}{7} \] #### Condition 2: \( T_6 < T_5 \) \[ \frac{T_6}{T_5} < 1 \] Calculating \( T_6 \): \[ T_6 = \binom{10}{5} \cdot \left(\frac{x}{3}\right)^{5} \] Thus, \[ \frac{T_6}{T_5} = \frac{\binom{10}{5} \cdot \left(\frac{x}{3}\right)^{5}}{\binom{10}{4} \cdot \left(\frac{x}{3}\right)^{4}} = \frac{\binom{10}{5}}{\binom{10}{4}} \cdot \frac{x}{3} \] Using the property of binomial coefficients: \[ \frac{\binom{10}{5}}{\binom{10}{4}} = \frac{10-4}{5} = \frac{6}{5} \] So, \[ \frac{6}{5} \cdot \frac{x}{3} < 1 \implies \frac{6x}{15} < 1 \implies x < \frac{15}{6} = \frac{5}{2} \] ### Step 4: Combine the conditions From the two conditions, we have: \[ \frac{12}{7} < x < \frac{5}{2} \] ### Step 5: Evaluate the options Now we check which of the provided options satisfy this inequality: - a. \( -2 \) (not valid) - b. \( 1.8 \) (valid since \( \frac{12}{7} \approx 1.71 < 1.8 < 2.5 \)) - c. \( 2 \) (valid since \( \frac{12}{7} \approx 1.71 < 2 < 2.5 \)) - d. \( -1.9 \) (not valid) ### Conclusion The values of \( x \) for which the 5th term is the numerically greatest term are \( 1.8 \) and \( 2 \).

To find the value of \( x \) for which the 5th term is the numerically greatest term in the expansion of \( \left(1 + \frac{x}{3}\right)^{10} \), we can follow these steps: ### Step 1: Identify the general term The general term \( T_r \) in the expansion of \( (a + b)^n \) is given by: \[ T_r = \binom{n}{r-1} a^{n-(r-1)} b^{r-1} \] For our case: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The numerically greatest term in the expansion of (1 + x)^(10) when x = 2//3 , is

Find the numerically greatest term in the expansion of (3-5x)^(15)w h e nx=1//5.

Find the numerically greatest terms in the expansion of (2 +3x)^10 when x = 11/8

Find the numerically greatest term in the expansion of (2+5x)^(21) when x = 2/5 .

Find the numerically greatest terms in the expansion of (3x-4y)^(14) when x = 8,y = 3

Find the numerically greatest terms in the expansion of (3y + 7x)^10 when x = 1/3, y = 1/2

Find numerically greatest term is the expansion of (3-5x)^11 "when " x=1/5

Find the numerically Greatest Term In the expansion of (3-5x)^15 when x=1/5

Find numerically greatest term in the expansion of (2 + 3 x)^9 , when x = 3/2.

Find the numerically greatest terms in the expansion of (3 + (2x)/(5))^12 when x = 3/4

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |