Home
Class 12
MATHS
Which of the following is/are true ?...

Which of the following is/are true ?

A

(a) `1000^(1000) gt 1002^(999)`

B

(b) `1000^(1000) lt 1002^(999)`

C

(c) `1000^(1002) lt 1002^(1000)`

D

(d) `1000^(1002) gt 1002^(1000)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the validity of the given options based on the relationship between powers of numbers. We will analyze two comparisons: \(1002^{999}\) vs \(1000^{1000}\) and \(1002^{1000}\) vs \(1000^{1002}\). ### Step 1: Compare \(1002^{999}\) and \(1000^{1000}\) We start by calculating the ratio: \[ \frac{1002^{999}}{1000^{1000}} = \frac{1002^{999}}{1000^{999} \cdot 1000} = \frac{1002^{999}}{1000^{999}} \cdot \frac{1}{1000} \] This can be rewritten as: \[ \frac{1002}{1000}^{999} \cdot \frac{1}{1000} \] ### Step 2: Simplify the Expression Next, we simplify \(\frac{1002}{1000}\): \[ \frac{1002}{1000} = 1 + \frac{2}{1000} \] Thus, we have: \[ \frac{1002^{999}}{1000^{1000}} = \left(1 + \frac{2}{1000}\right)^{999} \cdot \frac{1}{1000} \] ### Step 3: Apply Binomial Theorem Using the Binomial Theorem, we can approximate: \[ \left(1 + \frac{2}{1000}\right)^{999} \approx 1 + 999 \cdot \frac{2}{1000} = 1 + \frac{1998}{1000} \] This gives us: \[ \left(1 + \frac{2}{1000}\right)^{999} \approx 1.998 \] ### Step 4: Final Calculation Now substituting back: \[ \frac{1002^{999}}{1000^{1000}} \approx \frac{1.998}{1000} \] Since \(1.998 < 1\), we conclude: \[ 1002^{999} < 1000^{1000} \] ### Step 5: Conclusion for Option A Thus, Option A is **true**. --- ### Step 6: Compare \(1002^{1000}\) and \(1000^{1002}\) Now we will compare \(1002^{1000}\) and \(1000^{1002}\): \[ \frac{1002^{1000}}{1000^{1002}} = \frac{1002^{1000}}{1000^{1000} \cdot 1000^{2}} = \frac{1002^{1000}}{1000^{1000}} \cdot \frac{1}{1000^{2}} \] ### Step 7: Simplify Again This can be rewritten as: \[ \left(\frac{1002}{1000}\right)^{1000} \cdot \frac{1}{1000^{2}} = \left(1 + \frac{2}{1000}\right)^{1000} \cdot \frac{1}{1000^{2}} \] ### Step 8: Apply Binomial Theorem Again Using the Binomial Theorem again: \[ \left(1 + \frac{2}{1000}\right)^{1000} \approx 1 + 1000 \cdot \frac{2}{1000} = 3 \] ### Step 9: Final Calculation for Option D Substituting back: \[ \frac{1002^{1000}}{1000^{1002}} \approx \frac{3}{1000^{2}} \] Since \(3 < 1000^{2}\), we conclude: \[ 1002^{1000} < 1000^{1002} \] ### Step 10: Conclusion for Option D Thus, Option D is also **true**. --- ### Summary of Results - Option A: **True** - Option B: **False** - Option C: **False** - Option D: **True**

To solve the problem, we need to determine the validity of the given options based on the relationship between powers of numbers. We will analyze two comparisons: \(1002^{999}\) vs \(1000^{1000}\) and \(1002^{1000}\) vs \(1000^{1002}\). ### Step 1: Compare \(1002^{999}\) and \(1000^{1000}\) We start by calculating the ratio: \[ \frac{1002^{999}}{1000^{1000}} = \frac{1002^{999}}{1000^{999} \cdot 1000} = \frac{1002^{999}}{1000^{999}} \cdot \frac{1}{1000} ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Which of the following is a true?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is not true ?

Which of the following is a true match?

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |