Home
Class 12
MATHS
If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=...

If `sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r))`, then

A

a. `n = 1`

B

b. `n = 2`

C

c. `n = 3`

D

d. none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n^2 - 3n + 3}{2 \binom{n}{r}}, \] we will follow these steps: ### Step 1: Analyze the Left-Hand Side (LHS) The left-hand side is \[ \sum_{r=0}^{n} \frac{r}{\binom{n}{r}}. \] Using the identity \(\binom{n}{r} = \binom{n}{n-r}\), we can rewrite the sum: \[ \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n - (n - r)}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - \sum_{r=0}^{n} \frac{n - r}{\binom{n}{r}}. \] ### Step 2: Simplify the LHS We can denote the LHS as \(k\): \[ k = \sum_{r=0}^{n} \frac{n}{\binom{n}{r}} - k. \] This implies: \[ 2k = n \sum_{r=0}^{n} \frac{1}{\binom{n}{r}}. \] Thus, \[ k = \frac{n}{2} \sum_{r=0}^{n} \frac{1}{\binom{n}{r}}. \] ### Step 3: Analyze the Right-Hand Side (RHS) The right-hand side is \[ \sum_{r=0}^{n} \frac{n^2 - 3n + 3}{2 \binom{n}{r}}. \] We can factor out the constant term: \[ \frac{n^2 - 3n + 3}{2} \sum_{r=0}^{n} \frac{1}{\binom{n}{r}}. \] ### Step 4: Equate LHS and RHS Setting the two sides equal gives: \[ \frac{n}{2} \sum_{r=0}^{n} \frac{1}{\binom{n}{r}} = \frac{n^2 - 3n + 3}{2} \sum_{r=0}^{n} \frac{1}{\binom{n}{r}}. \] Assuming \(\sum_{r=0}^{n} \frac{1}{\binom{n}{r}} \neq 0\), we can cancel this term: \[ n = n^2 - 3n + 3. \] ### Step 5: Rearranging the Equation Rearranging gives: \[ 0 = n^2 - 4n + 3. \] ### Step 6: Factor the Quadratic Factoring the quadratic equation: \[ 0 = (n - 1)(n - 3). \] ### Step 7: Solve for \(n\) Setting each factor to zero gives us: \[ n - 1 = 0 \quad \Rightarrow \quad n = 1, \] \[ n - 3 = 0 \quad \Rightarrow \quad n = 3. \] ### Conclusion The solutions for \(n\) are \(n = 1\) and \(n = 3\).

To solve the equation \[ \sum_{r=0}^{n} \frac{r}{\binom{n}{r}} = \sum_{r=0}^{n} \frac{n^2 - 3n + 3}{2 \binom{n}{r}}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

f(n)=sum_(r=1)^(n) [r^(2)(""^(n)C_(r)-""^(n)C_(r-1))+(2r+1)(""^(n)C_(r ))] , then

Stetemet - 1: sum_(r=0)^(n) r. ""^(n)C_(r) = n 2^(n-1) Statement-2: sum_(r=0)^(n) r. ""^(n)C_(r) x^(r) = n (1 + x )^(n-1) x

Let T_(n) = sum_(r=1)^(n) (n)/(r^(2)-2r.n+2n^(2)), S_(n) = sum_(r=0)^(n)(n)/(r^(2)-2r.n+2n^(2)) then

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=0)^(n)((r+2)/(r+1))*""^(n)C_(r) is equal to :

sum_(r=1)^(n) r^(2)-sum_(r=1)^(n) sum_(r=1)^(n) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |