Home
Class 12
MATHS
If f(m) = sum(i=0)^m ({:(30),(30-i):})(...

If `f(m) = sum_(i=0)^m ({:(30),(30-i):})({:(20),(m-i):})` where `({:(p),(q):})= ""^(p)C_(q)`, then

A

maximum value of `f(m)` is `.^(50)C_(25)`

B

`f(0) + f(1)+"….."+f(50) = 2^(50)`

C

`f(m)` is always divisible by `50(1 le m le 49)`

D

The value of `underset(m=0)overset(50)sum(f(m))^(2) = .^(100)C_(50)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the function defined as: \[ f(m) = \sum_{i=0}^{m} \binom{30}{30-i} \binom{20}{m-i} \] This can be rewritten using the property of binomial coefficients, \(\binom{n}{r} = \binom{n}{n-r}\): \[ f(m) = \sum_{i=0}^{m} \binom{30}{i} \binom{20}{m-i} \] ### Step 1: Identify the Range of \(m\) Since \(\binom{20}{m-i}\) is defined only when \(0 \leq m-i \leq 20\), we conclude that \(m\) must satisfy: \[ m \leq 20 \] ### Step 2: Apply the Vandermonde Identity The sum can be interpreted using the Vandermonde identity, which states: \[ \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} = \binom{m+n}{r} \] In our case, we can apply this identity with \(m = 30\), \(n = 20\), and \(r = m\): \[ f(m) = \sum_{i=0}^{m} \binom{30}{i} \binom{20}{m-i} = \binom{30 + 20}{m} = \binom{50}{m} \] ### Step 3: Conclusion about \(f(m)\) Thus, we have: \[ f(m) = \binom{50}{m} \] ### Step 4: Analyze the Options Now, we need to analyze the options given in the problem statement. 1. **Option A**: The maximum value of \(f(m)\) is \(\binom{50}{25}\) (this is incorrect since the maximum occurs at \(m = 25\) but \(m\) can only go up to 20). 2. **Option B**: \(f(0) + f(1) + \ldots + f(50) = 2^{50}\) (this is incorrect since \(f(m)\) is defined only for \(m \leq 20\)). 3. **Option C**: \(f(m)\) is divisible by 50 for \(1 \leq m \leq 49\) (this is correct; since \(f(m) = \binom{50}{m}\), and for \(1 \leq m \leq 49\), \(\binom{50}{m}\) is divisible by 50). 4. **Option D**: \(\sum_{m=0}^{50} f(m)^2 = \binom{100}{50}\) (this is incorrect since \(f(m)\) is defined only for \(m \leq 20\)). ### Final Answer The correct option is **C**.

To solve the problem, we start with the function defined as: \[ f(m) = \sum_{i=0}^{m} \binom{30}{30-i} \binom{20}{m-i} \] This can be rewritten using the property of binomial coefficients, \(\binom{n}{r} = \binom{n}{n-r}\): ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The sum sum_(m)^(i=0) ({:(10),(i):})({:(20),(m-i):}) , (where ({:(p),(q):})= 0 , if p lt q ) is maximum when 'm' is

The sum sum_(i=0)^m ((10)c,(i))((20),(m-1)) , where ((p),(q))=0 if p lt q , is maximum when m is equal to (A) 5 (B) 10 (C) 15 (D) 20

If f(m)=sum_(i=0)^m(30(^) 30-i)(20(^)m-i)w h e r e(p q)=^p C_q ,t h e n (a) maximum value of f(m)i s^(50)C_(25) (b) f(0)+f(1)+...f(50)=2^(50) (c) f(m) is always divisible by 50(1lt=mlt=49) (d)The value of sum_(m=0)^(50)(f(m))^2=^(100)C_(50)

A=[{:(l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)),(l_(3),m_(3),n_(3)):}] and B=[{:(p_(1),q_(1),r_(1)),(p_(2),q_(2),r_(2)),(p_(3),q_(3),r_(3)):}] Where p_(i), q_(i),r_(i) are the co-factors of the elements l_(i), m_(i), n_(i) for i=1,2,3 . If (l_(1),m_(1),n_(1)),(l_(2),m_(2),n_(2)) and (l_(3),m_(3),n_(3)) are the direction cosines of three mutually perpendicular lines then (p_(1),q_(1), r_(1)),(p_(2),q_(2),r_(2)) and (p_(3),q_(),r_(3)) are

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))

Three particles of masses m , m and 4kg are kept at a verticals of triangle ABC . Coordinates of A , B and C are (1,2) , (3,2) and (-2,-2) respectively such that the centre of mass lies at origin. Find the value of mass m . Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))

If angles of a linear pair are equal, then the measure of each angle is (a) ( b ) (c) (d) (e) 30^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 45^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 60^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 90^(( q )0( r ))( s ) (t) (u)

The measure of an angle which is its own complement is (a) ( b ) (c) (d) (e) 30^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) (m) (n) 60^(( o )0( p ))( q ) (r) (s) (c) ( d ) (e) (f) (g) 90^(( h )0( i ))( j ) (k) (l) (d) ( m ) (n) (o) (p) 45^(( q )0( r ))( s ) (t) (u)

In Fig.88 P R is a straight line and /_P Q S :/_S Q R=7: 5. The measure of /_S Q R is (a) ( b ) (c) (d) (e) 60^(( f )0( g ))( h ) (i) (j) (b) ( k ) (l) 62 (m) (n) (o)1/( p )2( q ) (r)^(( s )0( t ))( u ) (v) (w) (c) ( d ) (e) 67 (f) (g) (h)1/( i )2( j ) (k)^(( l )0( m ))( n ) (o) (p) (d) ( q ) (r) (s) (t) 75^(( u )0( v ))( w ) (x) (y)

Three particles having their masses in the ratio 1 : 3 : 5 are kept at the vertices of a triangle ABC . Coordinate of A , B and C are (9,-3) , (3,4) and (0,0) . Find the coordinates of the centre of mass. Hint. x_(cm)=(sum_(i-1)^(3)m_(i)x_(i))/(sum_(i=1)^(3)m_(i)) , y_(cm)=(sum_(i=1)^(3)m_(i)y_(i))/(sum_(i=1)^(3)m_(i))

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |