Home
Class 12
MATHS
If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(6...

If `sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64)` where `n, p in N`, then (a) p=3 (b) p=4 (c) n=7 (d) n=6

A

`p = 3`

B

`p = 4`

C

`n = 7`

D

`n = 6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression given in the summation and find the values of \( p \) and \( n \) such that: \[ \sum_{r=0}^{n} (pr + 2) \binom{n}{r} = 25 \times 64 \] ### Step 1: Rewrite the Summation Let: \[ S = \sum_{r=0}^{n} (pr + 2) \binom{n}{r} \] ### Step 2: Split the Summation We can split the summation into two parts: \[ S = \sum_{r=0}^{n} pr \binom{n}{r} + \sum_{r=0}^{n} 2 \binom{n}{r} \] ### Step 3: Evaluate Each Part 1. The second part can be simplified using the binomial theorem: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] Thus, \[ \sum_{r=0}^{n} 2 \binom{n}{r} = 2 \cdot 2^n = 2^{n+1} \] 2. For the first part, we use the identity: \[ \sum_{r=0}^{n} r \binom{n}{r} = n \cdot 2^{n-1} \] Therefore, \[ \sum_{r=0}^{n} pr \binom{n}{r} = p \cdot n \cdot 2^{n-1} \] ### Step 4: Combine the Results Combining both parts, we have: \[ S = p \cdot n \cdot 2^{n-1} + 2^{n+1} \] ### Step 5: Set the Equation We know from the problem statement that: \[ S = 25 \times 64 \] Calculating \( 25 \times 64 \): \[ 25 \times 64 = 1600 \] So we set up the equation: \[ p \cdot n \cdot 2^{n-1} + 2^{n+1} = 1600 \] ### Step 6: Factor Out \( 2^{n-1} \) Factoring out \( 2^{n-1} \): \[ 2^{n-1}(pn + 4) = 1600 \] ### Step 7: Express \( 1600 \) in Terms of Powers of 2 We can express \( 1600 \) as: \[ 1600 = 2^6 \cdot 25 = 2^6 \cdot 5^2 \] Thus, we have: \[ 2^{n-1}(pn + 4) = 2^6 \cdot 5^2 \] ### Step 8: Equate the Powers of 2 From the equation, we can equate the powers of 2: \[ n - 1 = 6 \implies n = 7 \] ### Step 9: Substitute \( n \) Back to Find \( p \) Now substituting \( n = 7 \) back into the equation: \[ 2^6(p \cdot 7 + 4) = 1600 \] Dividing both sides by \( 2^6 \): \[ p \cdot 7 + 4 = 25 \] Solving for \( p \): \[ p \cdot 7 = 25 - 4 = 21 \implies p = \frac{21}{7} = 3 \] ### Conclusion The values we found are: - \( p = 3 \) - \( n = 7 \) ### Final Answer Thus, the correct options are: - (a) \( p = 3 \) - (c) \( n = 7 \)

To solve the problem, we need to evaluate the expression given in the summation and find the values of \( p \) and \( n \) such that: \[ \sum_{r=0}^{n} (pr + 2) \binom{n}{r} = 25 \times 64 \] ### Step 1: Rewrite the Summation Let: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

sum_(r=0)^(n)(""^(n)C_(r))/(r+2) is equal to :

The value of sum_(r=1)^(n)(""^(n)P_(r))/(r!) is

Prove that sum_(r=0)^(n) 3^( r" "n)C_(r ) =4^(n) .

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to (a) 3 (b) 4 (c) 5 (d) 6

If sum_(r=1)^(n) r(r+1) = ((n+a)(n+b)(n+c))/(3) , where a gt b gt c , then

Prove that sum_(r=0)^(2n)(r. ^(2n)C_r)^2=n^(4n)C_(2n) .

If sum_(r=0)^(n)((r+2)/(r+1)).^n C_r=(2^8-1)/6 , then n is (A) 8 (B) 4 (C) 6 (D) 5

If sum_(r=0)^(n) (r)/(""^(n)C_(r))= sum_(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C_(r)) , then

Statement-1: sum_(r =0)^(n) (r +1)""^(n)C_(r) = (n +2) 2^(n-1) Statement -2: sum_(r =0)^(n) (r+1) ""^(n)C_(r) x^(r) = (1 + x)^(n) + nx (1 + x)^(n-1)

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |