Home
Class 12
MATHS
If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))...

If `(x+1/x+1)^(6)=a_(0)+(a_(1)x+(b_(1))/(x))+(a_(2)x^(2)+(b_(2))/(x^(2)))+"...."+(a_(6)x^(6)+(b_(6))/(x^(6)))`, then

A

`a_() = 141`

B

`a_(5) = 6`

C

`underset(i=1)overset(6)sum a_(i) + b_(i) = 588`

D

`underset(i=1)overset(6)suma_(i) + b_(i) = 3^(6)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to expand the expression \((x + \frac{1}{x} + 1)^6\) using the Binomial Theorem and identify the coefficients \(a_i\) and \(b_i\) for the given polynomial form. ### Step-by-Step Solution: 1. **Rewrite the Expression**: \[ (x + \frac{1}{x} + 1)^6 \] 2. **Identify the Terms**: We can treat \(x + \frac{1}{x} + 1\) as a single term. To apply the Binomial Theorem, we can consider it as: \[ (a + b + c)^n \text{ where } a = x, b = \frac{1}{x}, c = 1, n = 6 \] 3. **Apply the Multinomial Expansion**: The multinomial expansion gives us: \[ \sum_{i+j+k=6} \frac{6!}{i!j!k!} x^i \left(\frac{1}{x}\right)^j 1^k \] where \(i\), \(j\), and \(k\) are non-negative integers. 4. **Simplify the Terms**: Each term in the expansion can be simplified to: \[ \frac{6!}{i!j!k!} x^{i-j} \] The term \(x^{i-j}\) indicates that the power of \(x\) will depend on the values of \(i\) and \(j\). 5. **Find Coefficients**: We need to find the coefficients \(a_i\) and \(b_i\) for \(x^i\) and \(\frac{1}{x^j}\). The coefficients can be derived from the multinomial expansion. 6. **Calculate \(a_0\)**: To find \(a_0\), we need the constant term when \(x = 1\): \[ (1 + 1 + 1)^6 = 3^6 = 729 \] The constant term \(a_0\) can be calculated by considering the contributions from all terms where \(i = j = 0\). 7. **Calculate \(a_5\)**: For \(a_5\), we need the coefficient of \(x^5\): \[ \text{Coefficient of } x^5 = \text{terms where } i = 5, j = 0, k = 1 \] This gives us: \[ \frac{6!}{5!0!1!} = 6 \] 8. **Calculate the Summation**: To find the summation \(\sum_{i=1}^{6} (a_i + b_i)\), we can substitute \(x = 1\) into the expanded polynomial: \[ 3^6 - a_0 = 729 - 141 = 588 \] 9. **Final Result**: Thus, the final answer for the summation of \(a_i + b_i\) from \(i = 1\) to \(6\) is: \[ \sum_{i=1}^{6} (a_i + b_i) = 588 \]

To solve the problem, we need to expand the expression \((x + \frac{1}{x} + 1)^6\) using the Binomial Theorem and identify the coefficients \(a_i\) and \(b_i\) for the given polynomial form. ### Step-by-Step Solution: 1. **Rewrite the Expression**: \[ (x + \frac{1}{x} + 1)^6 \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

Show that if x_(1),x_(2),x_(3) ne 0 |{:(x_(1) +a_(1)b_(1),,a_(1)b_(2),,a_(1)b_(3)),(a_(2)b_(1),,x_(2)+a_(2)b_(2),,a_(2)b_(3)),(a_(3)b_(1),,a_(3)b_(2),,x_(3)+a_(3)b_(3)):}| =x_(1)x_(2)x_(3) (1+(a_(1)b_(1))/(x_(1))+(a_(2)b_(2))/(x_(2))+(a_(3)b_(3))/(x_(3)))

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

Let y = 1 + (a_(1))/(x - a_(1)) + (a_(2) x)/((x - a_(1))(x - a_(2))) + (a_(3) x^(2))/((x - a_(1))(x - a_(2))(x - a_(3))) + … (a_(n) x^(n - 1))/((x - a_(1))(x - a_(2))(x - a_(3))..(x - a_(n))) Find (dy)/(dx)

if (5x^(2) +2)/(x^(3)+x)=(A_(1))/(x)+(A_(2)x+A_(3))/(x^(2)+1), then (A_(1), A_(2), A_(3))=

If a_(1),a_(2),a_(3),a_(4),,……, a_(n-1),a_(n) " are distinct non-zero real numbers such that " (a_(1)^(2) + a_(2)^(2) + a_(3)^(2) + …..+ a_(n-1)^(2))x^2 + 2 (a_(1)a_(2) + a_(2)a_(3) + a_(3)a_(4) + ……+ a_(n-1) a_(n))x + (a_(2)^(2) +a_(3)^(2) + a_(4)^(2) +......+ a_(n)^(2)) le 0 " then " a_(1), a_(2), a_(3) ,....., a_(n-1), a_(n) are in

Find the coefficient of x in the determinant |{:((1+x)^(a_(1)b_(1)),(1+x)^(a_(1)b_(2)),(1+x)^(a_(1)b_(3))),((1+x)^(a_(2)b_(1)),(1+x)^(a_(2)b_(2)),(1+x)^(a_(2)b_(3))),((1+x)^(a_(3)b_(1)),(1+x)^(a_(3)b_(2)),(1+x)^(a_(3)b_(3))):}|

If (1+x) ^(15) =a_(0) +a_(1) x +a_(2) x ^(2) +…+ a_(15) x ^(15), then the value of sum_(r=1) ^(15) r . (a_(r))/(a _(r-1)) is-

The value of |(a_(1) x_(1) + b_(1) y_(1),a_(1) x_(2) + b_(1) y_(2),a_(1) x_(3) + b_(1) y_(3)),(a_(2) x_(1) +b_(2) y_(1),a_(2) x_(2) + b_(2) y_(2),a_(2) x_(3) + b_(2) y_(3)),(a_(3) x_(1) + b_(3) y_(1),a_(3) x_(2) + b_(3) y_(2),a_(3) x_(3) + b_(3) y_(3))| , is

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |