Home
Class 12
MATHS
The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C...

The sum `2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40)` is divisible by

A

(a) `3`

B

(b) `5`

C

(c) `13`

D

(d) `2^(41)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \[ S = 2 \cdot \binom{40}{2} + 6 \cdot \binom{40}{3} + 12 \cdot \binom{40}{4} + 20 \cdot \binom{40}{5} + \ldots + 1560 \cdot \binom{40}{40} \] ### Step 1: Identify the general term The coefficients in front of the binomial coefficients can be expressed in terms of \( R \): - For \( R = 2 \), the coefficient is \( 2 = 2^2 - 2 \) - For \( R = 3 \), the coefficient is \( 6 = 3^2 - 3 \) - For \( R = 4 \), the coefficient is \( 12 = 4^2 - 4 \) - For \( R = 5 \), the coefficient is \( 20 = 5^2 - 5 \) - ... - For \( R = 40 \), the coefficient is \( 1560 = 40^2 - 40 \) Thus, the general term can be expressed as: \[ T_R = (R^2 - R) \cdot \binom{40}{R} \] ### Step 2: Rewrite the general term We can factor \( R \) out of the expression: \[ T_R = R(R - 1) \cdot \binom{40}{R} \] Using the identity \( \binom{n}{r} = \frac{n!}{r!(n-r)!} \), we can express \( \binom{40}{R} \) as: \[ \binom{40}{R} = \frac{40!}{R!(40-R)!} \] ### Step 3: Simplify the sum Now, we can rewrite the sum \( S \): \[ S = \sum_{R=2}^{40} R(R-1) \cdot \binom{40}{R} \] This can be simplified using the identity: \[ R(R-1) \cdot \binom{n}{R} = n(n-1) \cdot \binom{n-2}{R-2} \] Thus, we can express \( S \) as: \[ S = 40 \cdot 39 \cdot \sum_{R=2}^{40} \binom{38}{R-2} \] ### Step 4: Change the index of summation Changing the index of summation by letting \( k = R - 2 \): \[ S = 40 \cdot 39 \cdot \sum_{k=0}^{38} \binom{38}{k} \] ### Step 5: Evaluate the sum of binomial coefficients Using the binomial theorem, we know: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] Thus, \[ \sum_{k=0}^{38} \binom{38}{k} = 2^{38} \] ### Step 6: Substitute back into the expression for \( S \) Substituting this back into our expression for \( S \): \[ S = 40 \cdot 39 \cdot 2^{38} \] ### Step 7: Factor the expression Now, we can factor \( S \): \[ S = 5 \cdot 8 \cdot 39 \cdot 2^{38} \] ### Step 8: Factor \( 39 \) The number \( 39 \) can be factored as: \[ 39 = 3 \cdot 13 \] Thus, we have: \[ S = 5 \cdot 3 \cdot 13 \cdot 8 \cdot 2^{38} \] ### Conclusion The final expression shows that \( S \) is divisible by \( 5, 3, 13, \) and \( 2^{41} \) (since \( 8 = 2^3 \) and \( 2^{38} \) gives \( 2^{41} \) when combined).

To solve the problem, we need to find the sum \[ S = 2 \cdot \binom{40}{2} + 6 \cdot \binom{40}{3} + 12 \cdot \binom{40}{4} + 20 \cdot \binom{40}{5} + \ldots + 1560 \cdot \binom{40}{40} \] ### Step 1: Identify the general term ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Single Correct Answer|152 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of ""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40) is equal to "____" .

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

Find the sum .^(n)C_(1) + 2 xx .^(n)C_(2) + 3 xx .^(n)C_(3) + "……" + n xx .^(n)C_(n) .

Find the sum .^(n)C_(0) + 2 xx .^(n)C_(1) + xx .^(n)C_(2) + "….." + (n+1) xx .^(n)C_(n) .

Find the sum 1 xx 2 xx .^(n)C_(1) + 2 xx 3 xx .^(n)C_(2) + "….." + n xx (n+1) xx .^(n)C_(n) .

Statement-1: The expression ""^(40)C_(r)xx""^(60)C_(0)+""^(40)C_(r-1)xx""^(60)C_(1)+""^(40)C_(r-2)xx""^(60)C_(2)+.... attains its maximum volue when r = 50 Statement-2: ""^(2n)C_(r) is maximum when r=n.

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2m+1) 2^(n) .

The value of ""^(40) C_(31) + sum _(r = 0)^(10) ""^(40 + r) C_(10 +r) is equal to

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is (a) 40.^(69)C_(29) (b) 40.^(70)C_(30) (c) .^(60)C_(29) (d) .^(70)C_(30)

CENGAGE ENGLISH-BINOMIAL THEOREM-Multiple Correct Answer Type
  1. Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^k. If a1, a2 and a3 are in ari...

    Text Solution

    |

  2. For natural numbers m ,n ,if(1-y)^m(1+y)^n=1+a1y+a2y^2+... , and a1=a2...

    Text Solution

    |

  3. The middle term in the expansion of (x/2+2)^8 is 1120, then x in R is...

    Text Solution

    |

  4. In the expansion of (3-sqrt(17/4+3sqrt2))^15 the 11th term is a

    Text Solution

    |

  5. For the expansion (x sin p + x^(-1)cos p)^(10), (p in R),

    Text Solution

    |

  6. For which of the following values of x ,5t h term is the numerically g...

    Text Solution

    |

  7. Which of the following is/are true ?

    Text Solution

    |

  8. If sum(r=0)^(n) (r)/(""^(n)C(r))= sum(r=0)^(n) (n^(2)-3n+3)/(2.""^(n)C...

    Text Solution

    |

  9. The value of .^(n)C(1)+.^(n+1)C(2)+.^(n+2)C(3)+"….."+.^(n+m-1)C(m) is ...

    Text Solution

    |

  10. The number of terms in the expansion of (x^2+1+1/x^2)^n, n in N , is:

    Text Solution

    |

  11. In the expansion of (7^(1//3)+11^(1//9))^(6561) , there are exactly 73...

    Text Solution

    |

  12. If (1+x)^(n) = C(0) + C(1)x + C(2)x^(2) + "….." + C(n)x^(n), then C(0)...

    Text Solution

    |

  13. In the expansion of (a+b)^(n), if two consecutive terms are equal, the...

    Text Solution

    |

  14. If for z as real or complex, (1+z^2+z^4)^8=C0+C1z2+C2z4++C(16)z^(32)t ...

    Text Solution

    |

  15. If f(m) = sum(i=0)^m ({:(30),(30-i):})({:(20),(m-i):}) where ({:(p),(...

    Text Solution

    |

  16. If (1+x)^n=C0+C1x+C2x2++Cn x^n , n in N ,t h e nC0-C1+C2-+(-1)^(n-1)C...

    Text Solution

    |

  17. If sum(r=0)^(n) (pr+2).""^(n)C(r)=(25)(64) where n, p in N, then (a) p...

    Text Solution

    |

  18. If (x+1/x+1)^(6)=a(0)+(a(1)x+(b(1))/(x))+(a(2)x^(2)+(b(2))/(x^(2)))+"....

    Text Solution

    |

  19. Find the value of .^(20)C(0) xx .^(13)C(10) - .^(20)C(1) xx .^(12)C(...

    Text Solution

    |

  20. The sum 2 xx ""^(40)C(2) + 6 xx ""^(40)C(3) + 12 xx ""^(40)C(4) + 20 x...

    Text Solution

    |