Home
Class 12
MATHS
An equation a0+a1x+a2x^2+..................

An equation `a_0+a_1x+a_2x^2+...............+a_99x^99+x^100=0` has roots `.^(99)C_0 ,.^(99)C_1,.^(99)C_2....^(99)C_99`. Find the value of `a_99`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_{99} \) in the polynomial equation given the roots. Let's break it down step by step. ### Step 1: Understand the Polynomial The polynomial is given as: \[ a_0 + a_1 x + a_2 x^2 + \ldots + a_{99} x^{99} + x^{100} = 0 \] This can be rewritten in standard form: \[ x^{100} + a_{99} x^{99} + a_{98} x^{98} + \ldots + a_1 x + a_0 = 0 \] ### Step 2: Identify the Roots The roots of the polynomial are given as: \[ \binom{99}{0}, \binom{99}{1}, \binom{99}{2}, \ldots, \binom{99}{99} \] These are the binomial coefficients corresponding to \( n = 99 \). ### Step 3: Use Vieta's Formulas According to Vieta's formulas, the sum of the roots of the polynomial can be expressed as: \[ \text{Sum of roots} = -\frac{a_{99}}{1} \] This means: \[ \text{Sum of roots} = -a_{99} \] ### Step 4: Calculate the Sum of the Roots The sum of the binomial coefficients can be calculated using the identity: \[ \sum_{r=0}^{n} \binom{n}{r} = 2^n \] For \( n = 99 \): \[ \sum_{r=0}^{99} \binom{99}{r} = 2^{99} \] ### Step 5: Set Up the Equation From Step 3 and Step 4, we have: \[ -a_{99} = 2^{99} \] This implies: \[ a_{99} = -2^{99} \] ### Conclusion Thus, the value of \( a_{99} \) is: \[ \boxed{-2^{99}} \]

To solve the problem, we need to find the value of \( a_{99} \) in the polynomial equation given the roots. Let's break it down step by step. ### Step 1: Understand the Polynomial The polynomial is given as: \[ a_0 + a_1 x + a_2 x^2 + \ldots + a_{99} x^{99} + x^{100} = 0 \] This can be rewritten in standard form: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

An equation a_(0) + a_(2)x^(2) + "……" + a_(99)x^(99) + x^(100) = 0 has roots .^(99)C_(0), .^(99)C_(1), ^(99)C_(2), "…..", .^(99)C_(99) The value of (.^(99)C_(0))^(2) + (.^(99)C_(1))^(2) + "….." + (.^(99)C_(99))^(2) is equal to

Find the derivative of 99x at x = 100 .

lim_(n->oo)(1^(99)+2^(99)+3^(99)+.......n^(99))/(n^(100))=

If (1+x+x^2+x^3)^100=a_0+a_1x+a_2x^2+.......+a_300x^300, then

If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

If (1+x+x^2)^n=a_0+a_1x+a_2x^2++a_(2n)x_(2n), find the value of a_0+a_6++ ,n in Ndot

Calculate sqrt(0.99)

Evaluate: (-99) div 1

If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

Find the derivative of "f"("x")=99"x\ a t\ x"=100

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |