Home
Class 12
MATHS
If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(...

If `a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", ``b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and ``c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..",` then
Value of `a^(3) + b^(3) + c^(3) - 3abc` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \), where: - \( a = \binom{20}{0} + \binom{20}{3} + \binom{20}{6} + \ldots \) - \( b = \binom{20}{1} + \binom{20}{4} + \binom{20}{7} + \ldots \) - \( c = \binom{20}{2} + \binom{20}{5} + \binom{20}{8} + \ldots \) ### Step 1: Understand the sums \( a, b, c \) The sums \( a, b, c \) consist of binomial coefficients taken at intervals of 3. These can be interpreted as the sums of the coefficients of \( (1 + x)^{20} \) evaluated at the cube roots of unity. ### Step 2: Calculate \( a + b + c \) We know that: \[ a + b + c = \sum_{k=0}^{20} \binom{20}{k} = 2^{20} \] This is because the sum of the binomial coefficients for any \( n \) is \( 2^n \). ### Step 3: Calculate \( a + b\omega + c\omega^2 \) Let \( \omega = e^{2\pi i / 3} \) be a primitive cube root of unity. We need to evaluate: \[ a + b\omega + c\omega^2 \] Using the binomial theorem, we can expand \( (1 + \omega)^{20} \): \[ (1 + \omega)^{20} = \sum_{k=0}^{20} \binom{20}{k} \omega^k \] We can separate the terms based on their residues modulo 3: \[ (1 + \omega)^{20} = a + b\omega + c\omega^2 \] ### Step 4: Calculate \( (1 + \omega)^{20} \) Now we calculate \( 1 + \omega \): \[ 1 + \omega = 1 + \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right) = \frac{1}{2} + i\frac{\sqrt{3}}{2} \] The modulus of \( 1 + \omega \) is: \[ |1 + \omega| = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2} = \sqrt{\frac{1}{4} + \frac{3}{4}} = \sqrt{1} = 1 \] The argument is: \[ \theta = \tan^{-1}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right) = \frac{\pi}{3} \] Thus, we have: \[ (1 + \omega)^{20} = 1^{20} \cdot e^{20 \cdot \frac{\pi}{3} i} = e^{\frac{20\pi}{3} i} \] ### Step 5: Simplify \( e^{\frac{20\pi}{3} i} \) To simplify \( e^{\frac{20\pi}{3} i} \): \[ \frac{20\pi}{3} = 6\pi + \frac{2\pi}{3} \quad \text{(since } 6\pi \text{ is a multiple of } 2\pi\text{)} \] Thus, \[ e^{\frac{20\pi}{3} i} = e^{\frac{2\pi}{3} i} = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \omega^2 \] ### Step 6: Calculate \( a + b\omega^2 + c\omega \) Similarly, we can evaluate \( a + b\omega^2 + c\omega \): \[ (1 + \omega^2)^{20} = e^{\frac{20\pi}{3} i} = \omega \] ### Step 7: Use the identity for cubes Using the identity: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)((a + b + c)^2 - 3(ab + bc + ca)) \] We already know \( a + b + c = 2^{20} \). ### Step 8: Final Calculation Since \( a + b + c = 2^{20} \) and \( a + b\omega + c\omega^2 = \omega^2 \) and \( a + b\omega^2 + c\omega = \omega \), we can substitute these values back into the identity and simplify. After all calculations, we find: \[ a^3 + b^3 + c^3 - 3abc = 2^{20} \] ### Final Answer Thus, the value of \( a^3 + b^3 + c^3 - 3abc \) is: \[ \boxed{2^{20}} \]

To solve the problem, we need to find the value of \( a^3 + b^3 + c^3 - 3abc \), where: - \( a = \binom{20}{0} + \binom{20}{3} + \binom{20}{6} + \ldots \) - \( b = \binom{20}{1} + \binom{20}{4} + \binom{20}{7} + \ldots \) - \( c = \binom{20}{2} + \binom{20}{5} + \binom{20}{8} + \ldots \) ### Step 1: Understand the sums \( a, b, c \) ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "… and c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

let 2..^(20)C_(0)+5.^(20)C_(1)+8.^(20)C_(2)+?.+62.^(20)C_(20) . Then sum of this series is

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |