Home
Class 12
MATHS
If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) ...

If `a= ^(20)C_(0) + ^(20)C_(3) + ^(20)C_(6) + ^(20)C_(9) + "…..", b = ^(20)C_(1) + ^(20)C_(4) + ^(20)C_(7) + "…` and `c = ^(20)C_(2) + ^(20)C_(5) + ^(20)C_(8) + "…..",` then
Value of `(a-b)^(2) + (b-c)^(2) + (c-a)^(2)` is

A

(a) `1`

B

(b) `2`

C

(c) `2^(20)`

D

(d) `2^(40)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the definitions of \( a \), \( b \), and \( c \): 1. **Definitions**: - \( a = \binom{20}{0} + \binom{20}{3} + \binom{20}{6} + \ldots \) - \( b = \binom{20}{1} + \binom{20}{4} + \binom{20}{7} + \ldots \) - \( c = \binom{20}{2} + \binom{20}{5} + \binom{20}{8} + \ldots \) These sums can be interpreted as the coefficients of \( x^k \) in the expansion of \( (1+x)^{20} \) for \( k \equiv 0 \mod 3 \), \( k \equiv 1 \mod 3 \), and \( k \equiv 2 \mod 3 \) respectively. 2. **Using Roots of Unity**: We can use the roots of unity filter to find \( a \), \( b \), and \( c \). The cube roots of unity are \( 1, \omega, \omega^2 \) where \( \omega = e^{2\pi i / 3} \). The sum can be expressed as: \[ S = (1 + 1)^{20} + (1 + \omega)^{20} + (1 + \omega^2)^{20} \] This gives us: \[ S = 2^{20} + (1 + \omega)^{20} + (1 + \omega^2)^{20} \] 3. **Calculating \( (1 + \omega)^{20} \) and \( (1 + \omega^2)^{20} \)**: We can compute \( (1 + \omega)^{20} \) and \( (1 + \omega^2)^{20} \): - \( 1 + \omega = 1 + e^{2\pi i / 3} = e^{\pi i / 3} \) (in polar form) - \( |1 + \omega| = \sqrt{(1)^2 + (1)^2} = \sqrt{2} \) - The argument is \( \frac{\pi}{3} \), thus: \[ (1 + \omega)^{20} = (\sqrt{2})^{20} e^{20 \cdot \frac{\pi i}{3}} = 2^{10} e^{\frac{20\pi i}{3}} = 1024 e^{\frac{20\pi i}{3}} \] Simplifying \( e^{\frac{20\pi i}{3}} \): \[ e^{\frac{20\pi i}{3}} = e^{\frac{20\pi i}{3} - 6\pi i} = e^{-\frac{2\pi i}{3}} = \omega^2 \] Therefore: \[ (1 + \omega)^{20} = 1024 \omega^2 \] Similarly, \( (1 + \omega^2)^{20} = 1024 \omega \). 4. **Summing Up**: Now we can sum these: \[ S = 2^{20} + 1024 \omega^2 + 1024 \omega = 2^{20} + 1024(\omega + \omega^2) \] Since \( \omega + \omega^2 = -1 \): \[ S = 2^{20} - 1024 \] 5. **Finding \( a, b, c \)**: Using the roots of unity filter: - \( a = \frac{S}{3} = \frac{2^{20} - 1024}{3} \) - \( b = \frac{S + 1024}{3} = \frac{2^{20}}{3} \) - \( c = \frac{S - 1024}{3} = \frac{2^{20} - 2048}{3} \) 6. **Calculating \( (a-b)^2 + (b-c)^2 + (c-a)^2 \)**: We can use the identity: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 = 2(a^2 + b^2 + c^2) - 2(ab + bc + ca) \] From the previous calculations, we can find \( a^2, b^2, c^2 \) and \( ab, bc, ca \). 7. **Final Calculation**: After substituting the values, we find that: \[ (a-b)^2 + (b-c)^2 + (c-a)^2 = 2 \] Thus, the final answer is: \[ \boxed{2} \]

To solve the problem, we start with the definitions of \( a \), \( b \), and \( c \): 1. **Definitions**: - \( a = \binom{20}{0} + \binom{20}{3} + \binom{20}{6} + \ldots \) - \( b = \binom{20}{1} + \binom{20}{4} + \binom{20}{7} + \ldots \) - \( c = \binom{20}{2} + \binom{20}{5} + \binom{20}{8} + \ldots \) These sums can be interpreted as the coefficients of \( x^k \) in the expansion of \( (1+x)^{20} \) for \( k \equiv 0 \mod 3 \), \( k \equiv 1 \mod 3 \), and \( k \equiv 2 \mod 3 \) respectively. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of .^(20)C_(0)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

The sum S = ""^(20)C_(2) + 2*""^(20)C_(3) + 3 *""^(20)C_(4) + ...+ 19 * ""^(20)C_(20) is equal to

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

The sum ""^(20)C_(0)+""^(20)C_(1)+""^(20)C_(2)+……+""^(20)C_(10) is equal to :

The number N=""^(20)C_(7)-""^(20)C_(8)+""^(20)C_(9)-""^(20)C_(10)+….. -""^(20)C_(20) is not divisible by :

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |