Home
Class 12
MATHS
Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-...

Let `P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum__(r=1)^(50) (""^(50)C_(r))^(2), R = sum_(r=0)^(100) (-1)^(r) (""^(100)C_(r))^(2)`
The value of `P - Q` is equal to

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the values of \( P \), \( Q \), and then find \( P - Q \). ### Step-by-Step Solution 1. **Calculate \( P \)**: \[ P = \sum_{r=1}^{50} \frac{{\binom{50+r}{r} (2r-1)}}{{\binom{50}{r} (50+r)}} \] We can rewrite \( P \) using the identity \( \binom{n}{k} = \frac{n!}{k!(n-k)!} \). This gives us: \[ P = \sum_{r=1}^{50} \frac{{(50+r)!}}{{r!(50)!}} \cdot (2r-1) \cdot \frac{(50)!}{(50+r)!} \] Simplifying this, we get: \[ P = \sum_{r=1}^{50} \frac{(2r-1)}{(50+r)} \cdot \binom{50+r}{r} \] 2. **Rearranging \( P \)**: We can express \( P \) as: \[ P = \sum_{r=1}^{50} \left( \binom{50+r}{r} - \binom{49+r}{r-1} \right) \] This can be simplified further to: \[ P = \binom{100}{50} - 1 \] 3. **Calculate \( Q \)**: \[ Q = \sum_{r=1}^{50} \binom{50}{r}^2 \] Using the combinatorial identity: \[ \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \] We have: \[ Q = \binom{100}{50} \] 4. **Calculate \( P - Q \)**: Now we can find \( P - Q \): \[ P - Q = \left( \binom{100}{50} - 1 \right) - \binom{100}{50} \] Simplifying this gives: \[ P - Q = -1 \] ### Final Answer Thus, the value of \( P - Q \) is: \[ \boxed{-1} \]

To solve the problem, we need to calculate the values of \( P \), \( Q \), and then find \( P - Q \). ### Step-by-Step Solution 1. **Calculate \( P \)**: \[ P = \sum_{r=1}^{50} \frac{{\binom{50+r}{r} (2r-1)}}{{\binom{50}{r} (50+r)}} \] ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Let P =sum_(r=1)^(50)(""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of P - R is equal to

Let P = sum_(r=1)^(50) (""^(50+r)C_(r)(2r-1))/(""^(50)C_(r)(50+r)), Q = sum_(r=0)^(50)(""^(50)C_(r))^(2), R = sum_(r=0)^(100)(-1)^(r) (""^(100)C_(r))^(2) The value of Q + R is equal to

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value of K + G is

Let S = sum _(r=1)^(30) (""^(30+r)C_(r) (2r-1))/(""^(30)C_(r)(30+r)),K=sum_(r=0)^(30) (""^(30)C_(r))^(2) and G=sum_(r=0)^(60) (-1)^(r)(""^(60)C_(r) )^(2) The value fo (G-S)is

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , find the value of sum_(r=0)^(n) (r)/(""^(n)C_(r))

Find the sum sum_(r=1)^(n) r^(2) (""^(n)C_(r))/(""^(n)C_(r-1)) .

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |