Home
Class 12
MATHS
If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) ...

If `(1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40)`, then find the value of `a_(0) + a_(1) + a_(2) + "……" + a_(38)` .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum \( a_0 + a_1 + a_2 + \ldots + a_{38} \) from the expansion of \( (1 + x + 2x^2)^{20} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \( (1 + x + 2x^2)^{20} \). This can be expanded using the Binomial Theorem, which states that \( (a + b + c)^n \) can be expanded into a sum of terms involving \( a^i b^j c^k \) where \( i + j + k = n \). 2. **Finding \( a_0 + a_1 + a_2 + \ldots + a_{40} \)**: To find the sum of all coefficients \( a_0 + a_1 + a_2 + \ldots + a_{40} \), we can substitute \( x = 1 \): \[ (1 + 1 + 2 \cdot 1^2)^{20} = (1 + 1 + 2)^{20} = 4^{20} \] 3. **Finding \( a_0 + a_2 + a_4 + \ldots + a_{40} \)**: To find the sum of the coefficients of even powers, we substitute \( x = -1 \): \[ (1 - 1 + 2 \cdot (-1)^2)^{20} = (1 - 1 + 2)^{20} = 2^{20} \] 4. **Using the Results**: We have: - From step 2: \( a_0 + a_1 + a_2 + \ldots + a_{40} = 4^{20} \) - From step 3: \( a_0 + a_2 + a_4 + \ldots + a_{40} = 2^{20} \) 5. **Finding the Sum of Odd Coefficients**: The sum of the coefficients of odd powers can be found by subtracting the sum of even coefficients from the total sum: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = (a_0 + a_1 + a_2 + \ldots + a_{40}) - (a_0 + a_2 + a_4 + \ldots + a_{40}) \] This gives: \[ a_1 + a_3 + a_5 + \ldots + a_{39} = 4^{20} - 2^{20} \] 6. **Finding \( a_0 + a_1 + a_2 + \ldots + a_{38} \)**: To find \( a_0 + a_1 + a_2 + \ldots + a_{38} \), we note that: \[ a_0 + a_1 + a_2 + \ldots + a_{38} = (a_0 + a_1 + a_2 + \ldots + a_{40}) - (a_{39} + a_{40}) \] Since \( a_{40} \) is the coefficient of \( (2x^2)^{20} \) which is \( 2^{20} \), we have: \[ a_{40} = 1 \] Thus: \[ a_{39} = 0 \quad \text{(as there is no term with } x^{39} \text{)} \] 7. **Final Calculation**: Therefore: \[ a_0 + a_1 + a_2 + \ldots + a_{38} = 4^{20} - 1 \] ### Final Answer: \[ a_0 + a_1 + a_2 + \ldots + a_{38} = 4^{20} - 1 \]

To solve the problem, we need to find the sum \( a_0 + a_1 + a_2 + \ldots + a_{38} \) from the expansion of \( (1 + x + 2x^2)^{20} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \( (1 + x + 2x^2)^{20} \). This can be expanded using the Binomial Theorem, which states that \( (a + b + c)^n \) can be expanded into a sum of terms involving \( a^i b^j c^k \) where \( i + j + k = n \). 2. **Finding \( a_0 + a_1 + a_2 + \ldots + a_{40} \)**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40) is

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

If (1+ x + x ^(2) "_____"x ^(100))(1- x+x ^(2) - x ^(3) +"____"-x ^(150)) =a _(0) + a_(1) x + a_(2)x^2 + "___"+a _(250)x ^(250) Then the value of a _(0) + a _(2) + a_(4) +"____"+ a_(250) is equal to "____".

If (1+x+x^(2))^(3n+1)=a_(0)+a_(1)x+a_(2)x^(2)+…a_(6n+2)x^(6n+2) , then find the value of sum_(r=0)^(2n)(a_(3r)-(a_(3r+1)+a_(3r+2))/2) is______.

(1+x)^(n)=a_(0)+a_(1)x+a_(2)x^(2) +......+a_(n)x^(n) then Find the sum of the series a_(0) +a_(2)+a_(4) +……

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |