Home
Class 12
MATHS
If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "...

If `(1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40)`, then following questions.
The value of `a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40)` is

A

(a) `161 xx 3^(20)`

B

(b) `41 xx 3^(40)`

C

(c) `41 xx 3^(20)`

D

(d) none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_0 + 3a_1 + 5a_2 + \ldots + 81a_{40} \) given that \( (1 + x + x^2)^{20} = a_0 + a_1 x^2 + a_2 x^4 + \ldots + a_{40} x^{40} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^{20} \). The coefficients \( a_k \) represent the coefficients of \( x^{2k} \) in this expansion. 2. **Substituting \( x \) with \( \frac{1}{x} \)**: We substitute \( x \) with \( \frac{1}{x} \) in the original expression: \[ (1 + \frac{1}{x} + \frac{1}{x^2})^{20} = (x^2 + x + 1)^{20} \cdot \frac{1}{x^{40}} \] This gives us: \[ (x^2 + x + 1)^{20} = a_0 x^{40} + a_1 x^{38} + a_2 x^{36} + \ldots + a_{40} \] 3. **Equating Both Expressions**: Since both expressions are equal, we can compare coefficients. From the left-hand side: \[ (1 + x + x^2)^{20} = a_0 + a_1 x^2 + a_2 x^4 + \ldots + a_{40} x^{40} \] From the right-hand side: \[ (x^2 + x + 1)^{20} = a_0 x^{40} + a_1 x^{38} + a_2 x^{36} + \ldots + a_{40} \] 4. **Finding Relationships Between Coefficients**: From the comparison, we can establish: - \( a_{40} = a_0 \) - \( a_{39} = a_1 \) - \( a_{38} = a_2 \) - Continuing this pattern, we find that \( a_k = a_{40-k} \) for \( k = 0, 1, \ldots, 20 \). 5. **Evaluating the Sum**: We need to evaluate: \[ S = a_0 + 3a_1 + 5a_2 + \ldots + 81a_{40} \] Notice that the coefficients can be expressed as \( 2n + 1 \) where \( n \) is the index of \( a_n \). Thus, we can group terms: \[ S = (a_0 + 81a_{40}) + (3a_1 + 79a_{39}) + (5a_2 + 77a_{38}) + \ldots + (39a_{19} + 43a_{21}) + 41a_{20} \] 6. **Simplifying the Expression**: Each pair sums to \( 82a_k \): \[ S = 82(a_0 + a_1 + a_2 + \ldots + a_{19}) + 41a_{20} \] 7. **Finding \( a_0 + a_1 + \ldots + a_{20} \)**: To find \( a_0 + a_1 + \ldots + a_{20} \), we substitute \( x = 1 \) in the original expression: \[ (1 + 1 + 1)^{20} = 3^{20} \] Thus: \[ a_0 + a_1 + a_2 + \ldots + a_{20} = 3^{20} \] 8. **Final Calculation**: Therefore: \[ a_0 + a_1 + \ldots + a_{19} = 3^{20} - a_{20} \] Substitute back into \( S \): \[ S = 82 \left( \frac{3^{20} - a_{20}}{2} \right) + 41a_{20} \] Simplifying gives: \[ S = 41 \cdot 3^{20} \] ### Final Result: Thus, the value of \( a_0 + 3a_1 + 5a_2 + \ldots + 81a_{40} \) is: \[ \boxed{41 \cdot 3^{20}} \]

To solve the problem, we need to find the value of \( a_0 + 3a_1 + 5a_2 + \ldots + 81a_{40} \) given that \( (1 + x + x^2)^{20} = a_0 + a_1 x^2 + a_2 x^4 + \ldots + a_{40} x^{40} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 + x + x^2)^{20} \). The coefficients \( a_k \) represent the coefficients of \( x^{2k} \) in this expansion. 2. **Substituting \( x \) with \( \frac{1}{x} \)**: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer Type|27 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^() "……" + a_(40)x^(40) , then following questions. The value of a_(0) +a_(2) + a_(4)+ "……" + a_(38) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

If (1+2x+3x^(2))^(10)=a_(0)+a_(1)x+a_(2)x^(2)+a_(3)x^(3)+ . . .+a_(20)x^(20), then

If (1+x+x^(2))^(25)=a_(0)+a_(1)x+a_(2)x^(2)+……………..a_(50)x^(50) then the value of a_(0)+a_(2)+a_(4)+…………+a_(50) is

If (1 + x + x^(2) + x^(3))^(n)= a_(0) + a_(1)x + a_(2)x^(2) + a_(3) x^(3) +...+ a_(3n) x^(3n) , then the value of a_(0) + a_(4) +a_(8) + a_(12)+….. is

( 1 + x + x^(2))^(n) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(2n) x^(2n) , then a_(0) + a_(1) + a_(2) + a_(3) - a_(4) + … a_(2n) = .

If (1+ x + x ^(2) "_____"x ^(100))(1- x+x ^(2) - x ^(3) +"____"-x ^(150)) =a _(0) + a_(1) x + a_(2)x^2 + "___"+a _(250)x ^(250) Then the value of a _(0) + a _(2) + a_(4) +"____"+ a_(250) is equal to "____".

If (1 + x + x^(2) + x^(3))^(n) = a_(0) + a_(1)x + a_(2)x^(2)+"……….."a_(3n)x^(3n) then which of following are correct

If (1+x-2x^2)^(20)=a_0+a_1x+a_2x^2+a_3x^3++a_(40)x^(40), then find the value of a_1+a_3+a_5++a_(39)dot

CENGAGE ENGLISH-BINOMIAL THEOREM-Linked Comphrension
  1. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  2. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  3. The sixth term in the expansion of ( sqrt(2^(log(10-3^x))) + (2^((x-2)...

    Text Solution

    |

  4. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  5. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  6. If the 2nd, 3rd and 4th terms in the expansion of (x+a)^n are 240, ...

    Text Solution

    |

  7. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  8. An equation a0+a1x+a2x^2+...............+a99x^99+x^100=0 has roots .^(...

    Text Solution

    |

  9. An equation a(0) + a(2)x^(2) + "……" + a(99)x^(99) + x^(100) = 0 has ro...

    Text Solution

    |

  10. If a= .^(20)C(0) + .^(20)C(3) + .^(20)C(6) + .^(20)C(9) + "…..", b = ....

    Text Solution

    |

  11. If a= ^(20)C(0) + ^(20)C(3) + ^(20)C(6) + ^(20)C(9) + "…..", b = ^(20)...

    Text Solution

    |

  12. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  13. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  14. Consider the expansion of (a+b+c+d)^(6). Then the sum of all the coef...

    Text Solution

    |

  15. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  16. Let P =sum(r=1)^(50)(""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = sum...

    Text Solution

    |

  17. Let P = sum(r=1)^(50) (""^(50+r)C(r)(2r-1))/(""^(50)C(r)(50+r)), Q = s...

    Text Solution

    |

  18. If (1+x+2x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then find ...

    Text Solution

    |

  19. If (1+x+2x^(2))^(20) = a(0) + a(1)x^() "……" + a(40)x^(40), then follow...

    Text Solution

    |

  20. If (1+x+x^(2))^(20) = a(0) + a(1)x^(2) "……" + a(40)x^(40), then follow...

    Text Solution

    |