Home
Class 12
MATHS
The value of sum(r=0)^(3) ""^(8)C(r)(""^...

The value of `sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r))` is `"_____"`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \] ### Step 1: Break down the summation We can separate the summation into two parts: \[ \sum_{r=0}^{3} \binom{8}{r} \binom{5}{r+1} - \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} \] ### Step 2: Evaluate the first summation For the first summation, we can use the identity: \[ \sum_{r=0}^{n} \binom{m}{r} \binom{n}{r+k} = \binom{m+n}{n+k} \] In our case, we have \( m = 8 \), \( n = 5 \), and \( k = 1 \). Thus, we can write: \[ \sum_{r=0}^{3} \binom{8}{r} \binom{5}{r+1} = \sum_{r=1}^{4} \binom{8}{r-1} \binom{5}{r} \] This can be rewritten as: \[ \sum_{s=0}^{3} \binom{8}{s} \binom{5}{s+1} = \binom{8+5}{5+1} = \binom{13}{6} \] ### Step 3: Evaluate the second summation For the second summation, we can directly compute: \[ \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} \] This can also be evaluated using the Vandermonde identity: \[ \sum_{r=0}^{n} \binom{m}{r} \binom{n}{k-r} = \binom{m+n}{k} \] In our case, \( m = 8 \), \( n = 4 \), and \( k = 3 \): \[ \sum_{r=0}^{3} \binom{8}{r} \binom{4}{r} = \binom{8+4}{3} = \binom{12}{3} \] ### Step 4: Calculate the values Now we need to calculate the binomial coefficients: 1. Calculate \( \binom{13}{6} \): \[ \binom{13}{6} = \frac{13!}{6! \cdot 7!} = 1716 \] 2. Calculate \( \binom{12}{3} \): \[ \binom{12}{3} = \frac{12!}{3! \cdot 9!} = 220 \] ### Step 5: Combine the results Now, substituting back into our separated summation: \[ \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) = \binom{13}{6} - \binom{12}{3} = 1716 - 220 = 1496 \] Thus, the final answer is: \[ \text{The value is } 1496 \]

To solve the problem, we need to evaluate the expression: \[ \sum_{r=0}^{3} \binom{8}{r} \left( \binom{5}{r+1} - \binom{4}{r} \right) \] ### Step 1: Break down the summation ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

The vaule of sum_(r=0)^(n-1) (""^(C_(r))/(""^(n)C_(r) + ""^(n)C_(r +1)) is equal to

The value of sum_(r=0)^(15)r^(2)((""^(15)C_(r))/(""^(15)C_(r-1))) is equal to

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

The value of sum_(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C_(r)) is "_____" .

The value of sum_(r=0)^(n) sum_(p=0)^(r) ""^(n)C_(r) . ""^(r)C_(p) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r ^(6n)C_(2r+1)3^r is

The value of sum_(r=0)^(20)(-1)^(r )(""^(50)C_(r))/(r+2) is equal to

The value of sum_(r=1)^(n) (-1)^(r+1)(""^(n)C_(r))/(r+1) is equal to

The value of sum_(r=0)^(n) r(n -r) (""^(n)C_(r))^(2) is equal to

CENGAGE ENGLISH-BINOMIAL THEOREM-Numerical
  1. The largest value of x for which the fourth tem in the expansion (5^2/...

    Text Solution

    |

  2. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  3. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  6. Find the largest real value of x such that sum(k=0)^4((3^(4-k))/((4-k)...

    Text Solution

    |

  7. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  8. The total number of different terms in the product (.^(101)C(0) - .^(1...

    Text Solution

    |

  9. The constant term in the expansion of (log(x^(logx))-log(x^(2))100)^...

    Text Solution

    |

  10. The value of sum(r=0)^(3) ""^(8)C(r)(""^(5)C(r+1)-""^(4)C(r)) is "".

    Text Solution

    |

  11. The sum of the series (.^(101)C(1))/(.^(101)C(0)) + (2..^(101)C(2))/...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  14. The value of (lim)(nvecoo)sum(r=1)^(r-1)(sum(t=0)^(r-1)1/(5^n)dot^n Cr...

    Text Solution

    |

  15. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  16. If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^(2) + (.^(n)C(n))^(n), then ma...

    Text Solution

    |

  17. The value of ""^(40)C(0) xx ""^(100)C(40) ""^(40)C(1) xx ""^(99)C(40)...

    Text Solution

    |

  18. The value of sum(0leiltjle5) sum(""^(5)C(j))(""^(j)C(i)) is equal to "...

    Text Solution

    |

  19. If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r).x^(r ), then value of a(1) + 3...

    Text Solution

    |

  20. The value of sum(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C(r)) is "...

    Text Solution

    |