Home
Class 12
MATHS
The sum of the series (.^(101)C(1))/(....

The sum of the series
`(.^(101)C_(1))/(.^(101)C_(0)) + (2..^(101)C_(2))/(.^(101)C_(1)) + (3..^(101)C_(3))/(.^(101)C_(2)) + "….." + (101..^(101)C_(101))/(.^(101)C_(100))` is `"____"`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given series, we will break it down step by step. ### Given Series: \[ S = \frac{{^{101}C_1}}{{^{101}C_0}} + \frac{{2 \cdot ^{101}C_2}}{{^{101}C_1}} + \frac{{3 \cdot ^{101}C_3}}{{^{101}C_2}} + \ldots + \frac{{101 \cdot ^{101}C_{101}}}{{^{101}C_{100}}} \] ### Step 1: Simplifying Each Term Each term of the series can be rewritten as: \[ \frac{{r \cdot ^{101}C_r}}{{^{101}C_{r-1}}} \] Using the property of binomial coefficients, we know: \[ ^{n}C_{r} = \frac{n!}{r!(n-r)!} \] Thus, we can express: \[ \frac{{^{101}C_r}}{{^{101}C_{r-1}}} = \frac{^{101}C_r}{\frac{101!}{(r-1)!(101-r+1)!}} = \frac{101! \cdot (r-1)! \cdot (101-r)!}{r! \cdot (101-r)!} = \frac{101}{r} \] So, we can rewrite the term as: \[ \frac{r \cdot ^{101}C_r}{^{101}C_{r-1}} = r \cdot \frac{^{101}C_r}{^{101}C_{r-1}} = r \cdot \frac{101}{r} = 101 \] ### Step 2: Summing the Series Now, we can sum the series: \[ S = 101 + 101 + 101 + \ldots + 101 \quad \text{(for r = 1 to 101)} \] There are 101 terms in this series. ### Step 3: Final Calculation Thus, the sum \( S \) becomes: \[ S = 101 \times 101 = 10201 \] ### Final Answer: The sum of the series is: \[ \boxed{10201} \]

To solve the given series, we will break it down step by step. ### Given Series: \[ S = \frac{{^{101}C_1}}{{^{101}C_0}} + \frac{{2 \cdot ^{101}C_2}}{{^{101}C_1}} + \frac{{3 \cdot ^{101}C_3}}{{^{101}C_2}} + \ldots + \frac{{101 \cdot ^{101}C_{101}}}{{^{101}C_{100}}} \] ### Step 1: Simplifying Each Term ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The coefficient of x^(50) in (x+^(101)C_(0))(x+^(101)C_(1)).....(x+^(101)C_(50)) is

The total number of different terms in the product (.^(101)C_(0) - .^(101)C_(1)x+.^(101)C_(2)x^(2)-"….."-.^(101)C_(101)x^(101))(1+x+x^(2)+"…."+x^(100))^(101) is "____" .

(C_(0))/(1)+(C_(1))/(2)+(C_(2))/(3)+ . . . .+(C_(100))/(101) equals

The number of zeros at the end of (101)^(11)-1 is

Sum of the last 2 digit in sum_(r=0)^(101)(101-r)!

Compare which of the two is greater (100)^(1/100) and (101)^(1/101)

If f(x)=prod_(n=1)^(100)(x-n)^(n(101-n)) ; then (f(101))/(f'(101))=

The coefficient of x^(50) in the series sum_(r=1)^(101)rx^(r-1)(1+x)^(101-r) is

(-1)^(301)+(-1)^(302)+(-1)^(303)+ .... +(-1)^(400) (b) 101 100 (d) 0

Which is larger : (99^(50)+100^(50)) or (101)^(50) .

CENGAGE ENGLISH-BINOMIAL THEOREM-Numerical
  1. The largest value of x for which the fourth tem in the expansion (5^2/...

    Text Solution

    |

  2. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  3. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  6. Find the largest real value of x such that sum(k=0)^4((3^(4-k))/((4-k)...

    Text Solution

    |

  7. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  8. The total number of different terms in the product (.^(101)C(0) - .^(1...

    Text Solution

    |

  9. The constant term in the expansion of (log(x^(logx))-log(x^(2))100)^...

    Text Solution

    |

  10. The value of sum(r=0)^(3) ""^(8)C(r)(""^(5)C(r+1)-""^(4)C(r)) is "".

    Text Solution

    |

  11. The sum of the series (.^(101)C(1))/(.^(101)C(0)) + (2..^(101)C(2))/...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  14. The value of (lim)(nvecoo)sum(r=1)^(r-1)(sum(t=0)^(r-1)1/(5^n)dot^n Cr...

    Text Solution

    |

  15. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  16. If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^(2) + (.^(n)C(n))^(n), then ma...

    Text Solution

    |

  17. The value of ""^(40)C(0) xx ""^(100)C(40) ""^(40)C(1) xx ""^(99)C(40)...

    Text Solution

    |

  18. The value of sum(0leiltjle5) sum(""^(5)C(j))(""^(j)C(i)) is equal to "...

    Text Solution

    |

  19. If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r).x^(r ), then value of a(1) + 3...

    Text Solution

    |

  20. The value of sum(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C(r)) is "...

    Text Solution

    |