Home
Class 12
MATHS
If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^...

If `S_(n) = (.^(n)C_(0))^(2) + (.^(n)C_(1))^(2) + (.^(n)C_(n))^(n)`, then maximum value of `[(S_(n+1))/(S_(n))]` is `"_____"`.
(where `[*]` denotes the greatest integer function)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of \(\left\lfloor \frac{S_{n+1}}{S_n} \right\rfloor\), where \(S_n = \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \ldots + \binom{n}{n}^2\). ### Step 1: Express \(S_n\) in a simplified form Using the identity for the sum of squares of binomial coefficients, we know that: \[ S_n = \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] Thus, we can write: \[ S_n = \binom{2n}{n} \] ### Step 2: Write \(S_{n+1}\) Now, we can express \(S_{n+1}\) similarly: \[ S_{n+1} = \binom{2(n+1)}{n+1} = \binom{2n + 2}{n + 1} \] ### Step 3: Set up the ratio \(\frac{S_{n+1}}{S_n}\) Now we need to find: \[ \frac{S_{n+1}}{S_n} = \frac{\binom{2n + 2}{n + 1}}{\binom{2n}{n}} \] ### Step 4: Use the formula for binomial coefficients Using the formula for binomial coefficients: \[ \binom{n}{r} = \frac{n!}{r!(n-r)!} \] we can write: \[ \frac{S_{n+1}}{S_n} = \frac{\frac{(2n + 2)!}{(n + 1)!(n + 1)!}}{\frac{(2n)!}{n!n!}} = \frac{(2n + 2)! \cdot n! \cdot n!}{(n + 1)! \cdot (n + 1)! \cdot (2n)!} \] ### Step 5: Simplify the ratio This simplifies to: \[ \frac{S_{n+1}}{S_n} = \frac{(2n + 2)(2n + 1)}{(n + 1)(n + 1)} = \frac{2(2n + 1)}{n + 1} \] ### Step 6: Further simplify This can be rewritten as: \[ \frac{S_{n+1}}{S_n} = 4 - \frac{2}{n + 1} \] ### Step 7: Find the maximum value of \(\left\lfloor \frac{S_{n+1}}{S_n} \right\rfloor\) As \(n\) approaches infinity, \(\frac{2}{n + 1}\) approaches 0, thus: \[ \frac{S_{n+1}}{S_n} \to 4 \] The greatest integer function gives us: \[ \left\lfloor \frac{S_{n+1}}{S_n} \right\rfloor \to \left\lfloor 4 - \frac{2}{n + 1} \right\rfloor \] For large \(n\), this approaches 3. ### Conclusion Thus, the maximum value of \(\left\lfloor \frac{S_{n+1}}{S_n} \right\rfloor\) is: \[ \boxed{3} \]

To solve the problem, we need to find the maximum value of \(\left\lfloor \frac{S_{n+1}}{S_n} \right\rfloor\), where \(S_n = \binom{n}{0}^2 + \binom{n}{1}^2 + \binom{n}{2}^2 + \ldots + \binom{n}{n}^2\). ### Step 1: Express \(S_n\) in a simplified form Using the identity for the sum of squares of binomial coefficients, we know that: \[ S_n = \sum_{k=0}^{n} \binom{n}{k}^2 = \binom{2n}{n} \] Thus, we can write: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(nto oo)(sqrt(n^(2)+n+1)-[sqrt(n^(2)+n+1)]) where [.] denotes the greatest integer function is

The value of lim(n->oo)((1.5)^n + [(1 + 0.0001)^(10000)]^n)^(1/n) , where [.] denotes the greatest integer function is:

Prove that .^(n)C_(0) + (.^(n)C_(1))/(2) + (.^(n)C_(2))/(3) + "……" +(. ^(n)C_(n))/(n+1) = (2^(n+1)-1)/(n+1) .

show that [(sqrt(3) +1)^(2n)] + 1 is divisible by 2^(n+1) AA n in N , where [.] denote the greatest integer function .

If "^(n)C_(0)-^(n)C_(1)+^(n)C_(2)-^(n)C_(3)+...+(-1)^(r )*^(n)C_(r )=28 , then n is equal to ……

If S=Sigma_(n=1)^(oo) (""^(n)C_(0)+""^(n)C_(1)+""^(n)c_(2)+..+""^(n)C_(n))/(""^(n)P_(n)) then S equals

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(r+s)(C_(r)+C_(s)) is :

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If s_(n)=sum_(r=0)^(n)(1)/(.^(n)C_(r))and t_(n)=sum_(r=0)^(n)(r)/(.^(n)C_(r)) , then (t_(n))/(s_(n)) is equal to

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+….+C_(n)x^(n) , then the value of sumsum_(0lerltslen)(C_(r)+C_(s))^(2) is :

CENGAGE ENGLISH-BINOMIAL THEOREM-Numerical
  1. The largest value of x for which the fourth tem in the expansion (5^2/...

    Text Solution

    |

  2. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  3. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  6. Find the largest real value of x such that sum(k=0)^4((3^(4-k))/((4-k)...

    Text Solution

    |

  7. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  8. The total number of different terms in the product (.^(101)C(0) - .^(1...

    Text Solution

    |

  9. The constant term in the expansion of (log(x^(logx))-log(x^(2))100)^...

    Text Solution

    |

  10. The value of sum(r=0)^(3) ""^(8)C(r)(""^(5)C(r+1)-""^(4)C(r)) is "".

    Text Solution

    |

  11. The sum of the series (.^(101)C(1))/(.^(101)C(0)) + (2..^(101)C(2))/...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  14. The value of (lim)(nvecoo)sum(r=1)^(r-1)(sum(t=0)^(r-1)1/(5^n)dot^n Cr...

    Text Solution

    |

  15. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  16. If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^(2) + (.^(n)C(n))^(n), then ma...

    Text Solution

    |

  17. The value of ""^(40)C(0) xx ""^(100)C(40) ""^(40)C(1) xx ""^(99)C(40)...

    Text Solution

    |

  18. The value of sum(0leiltjle5) sum(""^(5)C(j))(""^(j)C(i)) is equal to "...

    Text Solution

    |

  19. If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r).x^(r ), then value of a(1) + 3...

    Text Solution

    |

  20. The value of sum(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C(r)) is "...

    Text Solution

    |