Home
Class 12
MATHS
The value of ""^(40)C(0) xx ""^(100)C(40...

The value of `""^(40)C_(0) xx ""^(100)C_(40) _ ""^(40)C_(1) xx ""^(99)C_(40) + ""^(40)C_(2) xx ""^(98)C_(40) -"……." + ""^(40)C_(40) xx ""^(60)C_(40)` is equal to `"____"`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{k=0}^{40} (-1)^k \binom{40}{k} \binom{100-k}{40} \] This expression can be interpreted as the coefficient of \(x^{40}\) in the expansion of: \[ (1+x)^{100} \cdot (1-x)^{40} \] ### Step-by-step Solution: 1. **Understand the Binomial Coefficients**: The expression involves binomial coefficients, which can be interpreted using the binomial theorem. The binomial theorem states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] 2. **Set Up the Generating Functions**: We can express the sum as the coefficient of \(x^{40}\) in the expansion of: \[ (1+x)^{100} \cdot (1-x)^{40} \] 3. **Expand the Terms**: Using the binomial theorem, we can expand both terms: - For \((1+x)^{100}\): \[ (1+x)^{100} = \sum_{m=0}^{100} \binom{100}{m} x^m \] - For \((1-x)^{40}\): \[ (1-x)^{40} = \sum_{n=0}^{40} \binom{40}{n} (-1)^n x^n \] 4. **Combine the Expansions**: The product of these two expansions gives: \[ (1+x)^{100} \cdot (1-x)^{40} = \left(\sum_{m=0}^{100} \binom{100}{m} x^m\right) \cdot \left(\sum_{n=0}^{40} \binom{40}{n} (-1)^n x^n\right) \] 5. **Find the Coefficient of \(x^{40}\)**: To find the coefficient of \(x^{40}\), we need to sum the products of coefficients where \(m+n=40\): \[ \sum_{n=0}^{40} \binom{100}{40-n} \binom{40}{n} (-1)^n \] 6. **Use the Binomial Theorem**: The above sum can be interpreted as: \[ \text{Coefficient of } x^{40} \text{ in } (1+x)^{100} (1-x)^{40} = \text{Coefficient of } x^{40} \text{ in } (1+x-x)^{100} = \text{Coefficient of } x^{40} \text{ in } (1)^{100} = 1 \] 7. **Conclusion**: Therefore, the value of the original expression is: \[ \boxed{1} \]

To solve the problem, we need to evaluate the expression: \[ \sum_{k=0}^{40} (-1)^k \binom{40}{k} \binom{100-k}{40} \] This expression can be interpreted as the coefficient of \(x^{40}\) in the expansion of: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

The sum ""^(40)C_(0) + ""^(40)C_(1)+""^(40)C_(2)+…+""^(40)C_(20) is equal to

The sum 2 xx ""^(40)C_(2) + 6 xx ""^(40)C_(3) + 12 xx ""^(40)C_(4) + 20 xx ""^(40)C_(5) + "…." + 1560 xx ""^(40)C_(40) is divisible by

The value of ""^(40) C_(31) + sum _(r = 0)^(10) ""^(40 + r) C_(10 +r) is equal to

the value of'"" (40)C_(31)+sum_(r=0)'""^(40+r)C_(10-r) is equal to

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is (a) 40.^(69)C_(29) (b) 40.^(70)C_(30) (c) .^(60)C_(29) (d) .^(70)C_(30)

If f(x) = ""^(40)C_(1).x(1-x)^(39) + 2.""^(40)C_(2).x^(2)(1-x)^(38)+3.""^(40)C_(3).x^(3)(1-x)^(37)+ "….."+40.""^(40)C_(40).x^(40) , then the value of f(3) is

Statement-1: The expression ""^(40)C_(r)xx""^(60)C_(0)+""^(40)C_(r-1)xx""^(60)C_(1)+""^(40)C_(r-2)xx""^(60)C_(2)+.... attains its maximum volue when r = 50 Statement-2: ""^(2n)C_(r) is maximum when r=n.

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

The value of underset(r=0)overset(40)sumr.^(40)C_(r).^(30)C_(r) is

C_(40)H_(56)O_(2) is an empirical formula of a

CENGAGE ENGLISH-BINOMIAL THEOREM-Numerical
  1. The largest value of x for which the fourth tem in the expansion (5^2/...

    Text Solution

    |

  2. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  3. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  6. Find the largest real value of x such that sum(k=0)^4((3^(4-k))/((4-k)...

    Text Solution

    |

  7. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  8. The total number of different terms in the product (.^(101)C(0) - .^(1...

    Text Solution

    |

  9. The constant term in the expansion of (log(x^(logx))-log(x^(2))100)^...

    Text Solution

    |

  10. The value of sum(r=0)^(3) ""^(8)C(r)(""^(5)C(r+1)-""^(4)C(r)) is "".

    Text Solution

    |

  11. The sum of the series (.^(101)C(1))/(.^(101)C(0)) + (2..^(101)C(2))/...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  14. The value of (lim)(nvecoo)sum(r=1)^(r-1)(sum(t=0)^(r-1)1/(5^n)dot^n Cr...

    Text Solution

    |

  15. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  16. If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^(2) + (.^(n)C(n))^(n), then ma...

    Text Solution

    |

  17. The value of ""^(40)C(0) xx ""^(100)C(40) ""^(40)C(1) xx ""^(99)C(40)...

    Text Solution

    |

  18. The value of sum(0leiltjle5) sum(""^(5)C(j))(""^(j)C(i)) is equal to "...

    Text Solution

    |

  19. If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r).x^(r ), then value of a(1) + 3...

    Text Solution

    |

  20. The value of sum(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C(r)) is "...

    Text Solution

    |