Home
Class 12
MATHS
If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r)....

If `(1-x-x^(2))^(20) = sum_(r=0)^(40)a_(r).x^(r )`, then value of `a_(1) + 3a_(3) + 5a_(5) + "….." + 39a_(39)` is

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a_1 + 3a_3 + 5a_5 + \ldots + 39a_{39} \) from the expansion of \( (1 - x - x^2)^{20} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 - x - x^2)^{20} \). This can be expanded using the binomial theorem, which states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \] In our case, \( a = 1 \) and \( b = -x - x^2 \). 2. **Expanding the Expression**: We can express the expansion as: \[ (1 - x - x^2)^{20} = \sum_{r=0}^{40} a_r x^r \] where \( a_r \) are the coefficients of \( x^r \). 3. **Differentiating the Expression**: To find the coefficients \( a_1, a_3, a_5, \ldots \), we differentiate the expression: \[ \frac{d}{dx}[(1 - x - x^2)^{20}] = 20(1 - x - x^2)^{19}(-1 - 2x) \] This gives us: \[ 20(1 - x - x^2)^{19}(-1 - 2x) = \sum_{r=0}^{39} ra_r x^{r-1} \] 4. **Evaluating at Specific Points**: We evaluate the differentiated expression at \( x = 1 \) and \( x = -1 \): - For \( x = 1 \): \[ (1 - 1 - 1)^{20} = 0 \implies 20(0)(-3) = 0 \] This gives us: \[ a_1 + 2a_2 + 3a_3 + \ldots + 40a_{40} = 0 \quad \text{(Equation 1)} \] - For \( x = -1 \): \[ (1 + 1 - 1)^{20} = 1 \implies 20(1)(-1) = -20 \] This gives us: \[ a_1 - 2a_2 + 3a_3 - 4a_4 + \ldots - 40a_{40} = -20 \quad \text{(Equation 2)} \] 5. **Adding the Two Equations**: Now, we add Equation 1 and Equation 2: \[ (a_1 + 2a_2 + 3a_3 + \ldots + 40a_{40}) + (a_1 - 2a_2 + 3a_3 - 4a_4 + \ldots - 40a_{40}) = 0 - 20 \] This simplifies to: \[ 2a_1 + 6a_3 + 10a_5 + \ldots + 80a_{39} = -20 \] 6. **Finding the Required Sum**: We can factor out 2 from the left side: \[ 2(a_1 + 3a_3 + 5a_5 + \ldots + 39a_{39}) = -20 \] Thus: \[ a_1 + 3a_3 + 5a_5 + \ldots + 39a_{39} = -10 \] ### Final Answer: The value of \( a_1 + 3a_3 + 5a_5 + \ldots + 39a_{39} \) is \( -10 \).

To solve the problem, we need to find the value of \( a_1 + 3a_3 + 5a_5 + \ldots + 39a_{39} \) from the expansion of \( (1 - x - x^2)^{20} \). ### Step-by-Step Solution: 1. **Understanding the Expression**: We start with the expression \( (1 - x - x^2)^{20} \). This can be expanded using the binomial theorem, which states that: \[ (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Archives|16 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Linked Comphrension|20 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

If (1+2x+x^(2))^(n) = sum_(r=0)^(2n)a_(r)x^(r) , then a_(r) =

If (1 +x + x^(2) + …+ x^(9))^(4) (x + x^(2) + x^(3) + … + x^(9)) = sum_(r=1)^(45) a_(r) x^(r) and the value of a_(2) + a_(6) + a_(10) + … + a_(42) " is " lambda the sum of all digits of lambda is .

Let (2x^(2)+3x+4)^(10)=sum_(r=0)^(20)a_(r )x^(r ) , then the value of (a_(7))/(a_(13)) is (a) 6 (b) 8 (c) 12 (d) 16

(1+2x+3x^(2))^(15) = sum_(r=0)^(30) a_(r)x^(r) then digit at the unit place of a_(0) + a_(1) + a_(30) is

If (1+x+2x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then find the value of a_(0) + a_(1) + a_(2) + "……" + a_(38) .

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of sum_(r=0)^(n)a_(r) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. The value of sum_(r=0)^(n-1) a_(r) is

If n in N such that is not a multiple of 3 and (1+x+x^(2))^(n) = sum_(r=0)^(2n) a_(r ). X^(r ) , then find the value of sum_(r=0)^(n) (-1)^(r ).a_(r).""^(n)C_(r ) .

If (1 + x+ 2x^(2))^(20) = a_(0) + a_(1) x + a_(2) x^(2) + …+ a_(40) x^(40) . The value of a_(0) + a_(2) + a_(4) + …+ a_(38) is

Consider (1 + x + x^(2))^(n) = sum_(r=0)^(n) a_(r) x^(r) , where a_(0), a_(1), a_(2),…, a_(2n) are real number and n is positive integer. If n is even, the value of sum_(r=0)^(n//2-1) a_(2r) is

CENGAGE ENGLISH-BINOMIAL THEOREM-Numerical
  1. The largest value of x for which the fourth tem in the expansion (5^2/...

    Text Solution

    |

  2. Let aa n db be the coefficients of x^3 in (1+x+2x^2+3x^3)^4a n d(1+x+2...

    Text Solution

    |

  3. If R is remainder when 6^(83)+8^(83) is divided by 49, then the value ...

    Text Solution

    |

  4. The remainder, if 1+2+2^2++2^(1999) is divided by 5 is.

    Text Solution

    |

  5. Given (1-2x+5x^2-10 x^3)(1+x)^n=1+a1x+a2x^2+ and thata1 ^2=2a2 then th...

    Text Solution

    |

  6. Find the largest real value of x such that sum(k=0)^4((3^(4-k))/((4-k)...

    Text Solution

    |

  7. The coefficient of x^(103) in (1+x+x^(2) +x^(3)+x^(4))^(199)(x-1)^(201...

    Text Solution

    |

  8. The total number of different terms in the product (.^(101)C(0) - .^(1...

    Text Solution

    |

  9. The constant term in the expansion of (log(x^(logx))-log(x^(2))100)^...

    Text Solution

    |

  10. The value of sum(r=0)^(3) ""^(8)C(r)(""^(5)C(r+1)-""^(4)C(r)) is "".

    Text Solution

    |

  11. The sum of the series (.^(101)C(1))/(.^(101)C(0)) + (2..^(101)C(2))/...

    Text Solution

    |

  12. Let a=3^(1/(223))+1 and for all geq3,l e tf(n)=^n C0dota^(n-1)-^n C1do...

    Text Solution

    |

  13. Let 1+sum(r=1)^(10)(3^r.^(10)Cr+r.^(10)Cr)=2^(10)(alpha. 4^5+beta) whe...

    Text Solution

    |

  14. The value of (lim)(nvecoo)sum(r=1)^(r-1)(sum(t=0)^(r-1)1/(5^n)dot^n Cr...

    Text Solution

    |

  15. If sum(r=0)^(n)((r+2)/(r+1)).^n Cr=(2^8-1)/6 , then n is (A) 8 (B...

    Text Solution

    |

  16. If S(n) = (.^(n)C(0))^(2) + (.^(n)C(1))^(2) + (.^(n)C(n))^(n), then ma...

    Text Solution

    |

  17. The value of ""^(40)C(0) xx ""^(100)C(40) ""^(40)C(1) xx ""^(99)C(40)...

    Text Solution

    |

  18. The value of sum(0leiltjle5) sum(""^(5)C(j))(""^(j)C(i)) is equal to "...

    Text Solution

    |

  19. If (1-x-x^(2))^(20) = sum(r=0)^(40)a(r).x^(r ), then value of a(1) + 3...

    Text Solution

    |

  20. The value of sum(r=1)^(49)(2r^(2) - 48r +1)/((50-r).""^(50)C(r)) is "...

    Text Solution

    |