Home
Class 12
MATHS
The value of (.^(21)C(1) - .^(10)C(1)) +...

The value of `(.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10))` is

A

`2^(20) - 2^(10)`

B

`2^(21) - 2^(11)`

C

`2^(21) - 2^(10)`

D

`2^(20) - 2^(9)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to evaluate the expression: \[ \sum_{k=1}^{10} \left( \binom{21}{k} - \binom{10}{k} \right) \] ### Step 1: Break down the summation We can express the summation as: \[ \sum_{k=1}^{10} \binom{21}{k} - \sum_{k=1}^{10} \binom{10}{k} \] ### Step 2: Evaluate the first summation The first summation, \(\sum_{k=1}^{10} \binom{21}{k}\), represents the sum of the first 10 binomial coefficients from the expansion of \((1 + 1)^{21}\). By the binomial theorem, we know that: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] Thus, \[ \sum_{k=0}^{21} \binom{21}{k} = 2^{21} \] However, we want only the first 10 terms. To find this, we can use the identity: \[ \sum_{k=0}^{n} \binom{n}{k} = 2^n \] This means: \[ \sum_{k=0}^{21} \binom{21}{k} = 2^{21} \] But we need to subtract the terms from \(k=11\) to \(k=21\): \[ \sum_{k=11}^{21} \binom{21}{k} = \sum_{k=0}^{21} \binom{21}{k} - \sum_{k=0}^{10} \binom{21}{k} \] Using the symmetry property of binomial coefficients, we know: \[ \sum_{k=11}^{21} \binom{21}{k} = \sum_{k=0}^{10} \binom{21}{k} \] Thus, we can conclude: \[ \sum_{k=0}^{10} \binom{21}{k} = \frac{1}{2} \cdot 2^{21} = 2^{20} \] So, \[ \sum_{k=1}^{10} \binom{21}{k} = 2^{20} - 1 \] ### Step 3: Evaluate the second summation Now we evaluate the second summation, \(\sum_{k=1}^{10} \binom{10}{k}\): \[ \sum_{k=0}^{10} \binom{10}{k} = 2^{10} \] Thus, \[ \sum_{k=1}^{10} \binom{10}{k} = 2^{10} - 1 \] ### Step 4: Combine the results Now we can combine the results from both summations: \[ \sum_{k=1}^{10} \left( \binom{21}{k} - \binom{10}{k} \right) = (2^{20} - 1) - (2^{10} - 1) \] This simplifies to: \[ 2^{20} - 2^{10} \] ### Final Result Thus, the final value of the expression is: \[ 2^{20} - 2^{10} \]

To solve the given problem, we need to evaluate the expression: \[ \sum_{k=1}^{10} \left( \binom{21}{k} - \binom{10}{k} \right) \] ### Step 1: Break down the summation We can express the summation as: ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

Find the value of (.^(10)C_(10))+(.^(10)C_(0)+.^(10)C_(1))+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2))+"...."+(.^(10)C_(0)+.^(10)C_(1)+.^(10)C_(2)+"....." + .^(10)C_(9)) .

The value of |(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))| is equal to zero when m is

The sum of the series .^(20)C_(0)-.^(20)C_(1)+ .^(20)C_(2)-.^(20)C_(3)+...-.+ .^(20)C_(10) is -

Find the value of n: (i) .^(n)C_(10)=^(n)C_(16) (ii) .^(15)C_(n) =^(15)C_(n+3) (iii) .^(10)C_(n) =^(10)C_(n+2) (iv) .^(25)C_(3n) =.^(25)C_(n+1) (v) .^(n)C_(r) =.^(n)C_(r-2)

The value of sum_(r=2)^(10) ""^(r)C_(2).""^(10)C_(r) is

Find the sum 2..^(10)C_(0) + (2^(2))/(2).^(10)C_(1) + (2^(3))/(3).^(10)C_(2)+(2^(4))/(4).^(10)C_(3)+"...."+(2^(11))/(11).^(10)C_(10) .

In the expansion off (1+x)^(10)=.^(10)C_(0)+.^(10)C_(1)x+.^(10)C_(2)x^(2)+ . . .+.^(10)C_(10)x^(10) , then value of 528[(.^(10)C_(0))/(2)-(.^(10)C_(1))/(3)+(.^(10)C_(2))/(4)-(.^(10)C_(3))/(5)+ . . .+(.^(10)C_(10))/(12)] is equal to________.

Evaluate: .^(20)C_(5)+^(20)C_(4)+^(21)C_(4)+^(22)C_(4)

Evaluate the following : (i) 1+.^(20)C_(1)+^(20)C_(2)+^(20)C_(3)+....+^(20)C_(19)+^(20)C_(20) (ii) ^(10)C_(1)+^(10)C_(2)+^(10)C_(3)+.....+^(10)C_(9) (iii)^(25)C_(1)+^(25)C_(3)+^(25)C_(5)+.....+^(25)C_(25) (iv) ^(18)C_(2)+^(18)C_(4)+^(18)C_(4)+^(18)C_(6)+....+^(18)C_(18)