Home
Class 12
MATHS
For r = 0, 1,"…..",10, let A(r),B(r), an...

For `r = 0, 1,"…..",10`, let `A_(r),B_(r)`, and `C_(r)` denote, respectively, the coefficient of `x^(r )` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`. Then `sum_(r=1)^(10) A_(r)(B_(10)B_(r ) - C_(10)A_(r ))` is equal to

A

`B_(10) - C_(10)`

B

`A_(1)(B_(10)^(2) - C_(10)A_(10))`

C

0

D

`C_(10) - B_(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \[ \sum_{r=1}^{10} A_r (B_{10} B_r - C_{10} A_r) \] where \( A_r \), \( B_r \), and \( C_r \) are the coefficients of \( x^r \) in the expansions of \( (1+x)^{10} \), \( (1+x)^{20} \), and \( (1+x)^{30} \) respectively. ### Step-by-step Solution: 1. **Identify the Coefficients**: - The coefficient \( A_r \) in \( (1+x)^{10} \) is given by \( \binom{10}{r} \). - The coefficient \( B_r \) in \( (1+x)^{20} \) is given by \( \binom{20}{r} \). - The coefficient \( C_r \) in \( (1+x)^{30} \) is given by \( \binom{30}{r} \). 2. **Substituting the Coefficients**: - Substitute \( A_r \), \( B_r \), and \( C_r \) into the sum: \[ \sum_{r=1}^{10} \binom{10}{r} \left( \binom{20}{10} \binom{20}{r} - \binom{30}{10} \binom{10}{r} \right) \] 3. **Distributing the Sum**: - Distributing the sum gives: \[ \sum_{r=1}^{10} \binom{10}{r} \binom{20}{10} \binom{20}{r} - \sum_{r=1}^{10} \binom{10}{r} \binom{30}{10} \binom{10}{r} \] 4. **Evaluating the First Sum**: - The first sum can be simplified using the binomial theorem: \[ \binom{20}{10} \sum_{r=1}^{10} \binom{10}{r} \binom{20}{r} = \binom{20}{10} \cdot 2^{10} \] (since \( \sum_{r=0}^{n} \binom{n}{r} \binom{m}{r} = \binom{n+m}{n} \)) 5. **Evaluating the Second Sum**: - The second sum can also be simplified: \[ \sum_{r=1}^{10} \binom{10}{r}^2 = \binom{20}{10} \] (using the identity \( \sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n} \)) 6. **Putting It All Together**: - Now we have: \[ \binom{20}{10} \cdot 2^{10} - \binom{30}{10} \cdot \binom{20}{10} \] - Factor out \( \binom{20}{10} \): \[ \binom{20}{10} (2^{10} - \binom{30}{10}) \] 7. **Final Result**: - Thus, the final result is: \[ \sum_{r=1}^{10} A_r (B_{10} B_r - C_{10} A_r) = \binom{20}{10} (2^{10} - \binom{30}{10}) \]

To solve the problem, we need to evaluate the expression \[ \sum_{r=1}^{10} A_r (B_{10} B_r - C_{10} A_r) \] where \( A_r \), \( B_r \), and \( C_r \) are the coefficients of \( x^r \) in the expansions of \( (1+x)^{10} \), \( (1+x)^{20} \), and \( (1+x)^{30} \) respectively. ...
Promotional Banner

Topper's Solved these Questions

  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Multiple Correct Answer|4 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Comprehension|11 Videos
  • BINOMIAL THEOREM

    CENGAGE ENGLISH|Exercise Numerical|25 Videos
  • AREA

    CENGAGE ENGLISH|Exercise Comprehension Type|2 Videos
  • CIRCLE

    CENGAGE ENGLISH|Exercise MATRIX MATCH TYPE|7 Videos

Similar Questions

Explore conceptually related problems

Prove that the coefficient of x^r in the expansion of (1-2x)^(-1/2) is (2r!)/[(2^r)(r!)^2]

The value of sum_(r=1)^(10) r. (""^(n)C_(r))/(""^(n)C_(r-1) is equal to

If a_(r) is the coefficient of x^(r ) in the expansion of (1+x+x^(2))^(n)(n in N) . Then the value of (a_(1)+4a_(4)+7a_(7)+10a_(10)+……..) is equal to :

If A and B are coefficients of x^r and x^(n-r) respectively in the expansion of (1 + x)^n , then

sum_(r=1)^(n) {sum_(r1=0)^(r-1) ""^(n)C_(r) ""^(r)C_(r_(1)) 2^(r1)} is equal to

If C_(r) be the coefficients of x^(r) in (1 + x)^(n) , then the value of sum_(r=0)^(n) (r + 1)^(2) C_(r) , is

If Sigma_(r=1)^(10) r(r-1) ""^(10)C_r = k. 2^9

The value of ""^(40) C_(31) + sum _(r = 0)^(10) ""^(40 + r) C_(10 +r) is equal to

If ""(n)C_(0), ""(n)C_(1), ""(n)C_(2), ...., ""(n)C_(n), denote the binomial coefficients in the expansion of (1 + x)^(n) and p + q =1 sum_(r=0)^(n) r^(2 " "^n)C_(r) p^(r) q^(n-r) = .

Let (1 + x)^(n) = sum_(r=0)^(n) a_(r) x^(r) . Then ( a+ (a_(1))/(a_(0))) (1 + (a_(2))/(a_(1)))…(1 + (a_(n))/(a_(n-1))) is equal to