Home
Class 12
MATHS
If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h ...

If `x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = 2\), we start with the parametric equations given: \[ x = \frac{2t}{1 + t^2} \] \[ y = \frac{1 - t^2}{1 + t^2} \] ### Step 1: Differentiate \(x\) with respect to \(t\) Using the quotient rule, where if \(u = 2t\) and \(v = 1 + t^2\), then: \[ \frac{dx}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = 2\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dx}{dt} = \frac{(1 + t^2)(2) - (2t)(2t)}{(1 + t^2)^2} \] \[ = \frac{2 + 2t^2 - 4t^2}{(1 + t^2)^2} \] \[ = \frac{2 - 2t^2}{(1 + t^2)^2} \] \[ = \frac{2(1 - t^2)}{(1 + t^2)^2} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Using the quotient rule again, where \(u = 1 - t^2\) and \(v = 1 + t^2\): \[ \frac{dy}{dt} = \frac{v \frac{du}{dt} - u \frac{dv}{dt}}{v^2} \] Calculating \(\frac{du}{dt}\) and \(\frac{dv}{dt}\): - \(\frac{du}{dt} = -2t\) - \(\frac{dv}{dt} = 2t\) Now substituting into the quotient rule: \[ \frac{dy}{dt} = \frac{(1 + t^2)(-2t) - (1 - t^2)(2t)}{(1 + t^2)^2} \] \[ = \frac{-2t - 2t^3 - 2t + 2t^3}{(1 + t^2)^2} \] \[ = \frac{-4t}{(1 + t^2)^2} \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{-4t / (1 + t^2)^2}{2(1 - t^2) / (1 + t^2)^2} \] \[ = \frac{-4t}{2(1 - t^2)} \] \[ = \frac{-2t}{1 - t^2} \] ### Step 4: Evaluate \(\frac{dy}{dx}\) at \(t = 2\) Now substituting \(t = 2\): \[ \frac{dy}{dx} = \frac{-2(2)}{1 - (2)^2} \] \[ = \frac{-4}{1 - 4} \] \[ = \frac{-4}{-3} \] \[ = \frac{4}{3} \] Thus, the value of \(\frac{dy}{dx}\) at \(t = 2\) is: \[ \frac{4}{3} \]

To find \(\frac{dy}{dx}\) at \(t = 2\), we start with the parametric equations given: \[ x = \frac{2t}{1 + t^2} \] \[ y = \frac{1 - t^2}{1 + t^2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

"If "x=(2t)/(1+t^(2)),y=(1-t^(2))/(1+t^(2))," then find "(dy)/(dx)" at "t=2.

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2) , tany=(2t)/(1-t^2) , find (dy)/(dx) .

If sinx=(2t)/(1+t^2),tany=(2t)/(1-t^2),"f i n d"(dy)/(dx)dot

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

If x=a((1+t^2)/(1-t^2))"and"y=(2t)/(1-t^2),"f i n d"(dy)/(dx)

If x=(3at)/ (1+t^3), y=(3at^2)/(1+t^3), then dy/dx is

If x=(1-t^(2))/(1+t^(2)) and y=(2t)/(1+t^(2)) , then (dy)/(dx) is equal to