Home
Class 12
MATHS
Find (dy)/(dx) if x= 3 cos theta - cos 2...

Find `(dy)/(dx)` if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(x = 3 \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will use the chain rule. We will first find \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\), and then use these to find \(\frac{dy}{dx}\). ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 3 \cos \theta - \cos 2\theta \] Differentiating \(x\) with respect to \(\theta\): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(3 \cos \theta) - \frac{d}{d\theta}(\cos 2\theta) \] Using the derivative of \(\cos\): \[ \frac{d}{d\theta}(\cos \theta) = -\sin \theta \quad \text{and} \quad \frac{d}{d\theta}(\cos 2\theta) = -\sin 2\theta \cdot 2 \] So, \[ \frac{dx}{d\theta} = -3 \sin \theta + 2 \sin 2\theta \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Given: \[ y = \sin \theta - \sin 2\theta \] Differentiating \(y\) with respect to \(\theta\): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(\sin \theta) - \frac{d}{d\theta}(\sin 2\theta) \] Using the derivative of \(\sin\): \[ \frac{d}{d\theta}(\sin \theta) = \cos \theta \quad \text{and} \quad \frac{d}{d\theta}(\sin 2\theta) = \cos 2\theta \cdot 2 \] So, \[ \frac{dy}{d\theta} = \cos \theta - 2 \cos 2\theta \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\cos \theta - 2 \cos 2\theta}{-3 \sin \theta + 2 \sin 2\theta} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\cos \theta - 2 \cos 2\theta}{-3 \sin \theta + 2 \sin 2\theta} \] ---

To find \(\frac{dy}{dx}\) given \(x = 3 \cos \theta - \cos 2\theta\) and \(y = \sin \theta - \sin 2\theta\), we will use the chain rule. We will first find \(\frac{dx}{d\theta}\) and \(\frac{dy}{d\theta}\), and then use these to find \(\frac{dy}{dx}\). ### Step 1: Differentiate \(x\) with respect to \(\theta\) Given: \[ x = 3 \cos \theta - \cos 2\theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) if x=cos theta - cos 2 theta and" "y = sin theta - sin 2theta

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

"Find "(dy)/(dx) if x =a(theta- sin theta) and y= a (1- cos theta).

If x=3costheta-cos^3theta y=3sintheta-sin^3theta find dy/dx

Find (dy)/(dx) when x = a cos theta and y = b sin theta

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If x =2 cos theta - cos 2 theta y = 2 sin theta - sin 2 theta Find (d^(2)y)/(dx^(2)) at theta = pi/2

If x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta , then dy/dx is

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .