Home
Class 12
MATHS
If x = 3 cos theta - 2 cos^3 theta,y = 3...

If `x = 3 cos theta - 2 cos^3 theta,y = 3 sin theta - 2 sin^3 theta`, then `dy/dx` is

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \frac{dy}{dx} \) given the parametric equations \( x = 3 \cos \theta - 2 \cos^3 \theta \) and \( y = 3 \sin \theta - 2 \sin^3 \theta \), we will follow these steps: ### Step 1: Differentiate \( x \) with respect to \( \theta \) Given: \[ x = 3 \cos \theta - 2 \cos^3 \theta \] Differentiating \( x \) with respect to \( \theta \): \[ \frac{dx}{d\theta} = \frac{d}{d\theta}(3 \cos \theta) - \frac{d}{d\theta}(2 \cos^3 \theta) \] Using the chain rule: \[ \frac{dx}{d\theta} = 3(-\sin \theta) - 2 \cdot 3 \cos^2 \theta (-\sin \theta) \] \[ = -3 \sin \theta + 6 \cos^2 \theta \sin \theta \] \[ = \sin \theta (6 \cos^2 \theta - 3) \] ### Step 2: Differentiate \( y \) with respect to \( \theta \) Given: \[ y = 3 \sin \theta - 2 \sin^3 \theta \] Differentiating \( y \) with respect to \( \theta \): \[ \frac{dy}{d\theta} = \frac{d}{d\theta}(3 \sin \theta) - \frac{d}{d\theta}(2 \sin^3 \theta) \] Using the chain rule: \[ \frac{dy}{d\theta} = 3 \cos \theta - 2 \cdot 3 \sin^2 \theta \cos \theta \] \[ = 3 \cos \theta - 6 \sin^2 \theta \cos \theta \] \[ = \cos \theta (3 - 6 \sin^2 \theta) \] ### Step 3: Find \( \frac{dy}{dx} \) Using the formula: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{\cos \theta (3 - 6 \sin^2 \theta)}{\sin \theta (6 \cos^2 \theta - 3)} \] ### Step 4: Simplify the expression Factoring out common terms: \[ = \frac{3 \cos \theta - 6 \sin^2 \theta \cos \theta}{6 \cos^2 \theta - 3} = \frac{3 \cos \theta (1 - 2 \sin^2 \theta)}{3(2 \cos^2 \theta - 1)} \] \[ = \frac{\cos \theta (1 - 2 \sin^2 \theta)}{2 \cos^2 \theta - 1} \] Using the identity \( 1 - 2 \sin^2 \theta = \cos 2\theta \) and \( 2 \cos^2 \theta - 1 = \cos 2\theta \): \[ = \frac{\cos \theta \cos 2\theta}{\cos 2\theta} \] Thus, we can cancel \( \cos 2\theta \) (assuming \( \cos 2\theta \neq 0 \)): \[ \frac{dy}{dx} = \cos \theta \] ### Final Answer: \[ \frac{dy}{dx} = \cos \theta \]

To find \( \frac{dy}{dx} \) given the parametric equations \( x = 3 \cos \theta - 2 \cos^3 \theta \) and \( y = 3 \sin \theta - 2 \sin^3 \theta \), we will follow these steps: ### Step 1: Differentiate \( x \) with respect to \( \theta \) Given: \[ x = 3 \cos \theta - 2 \cos^3 \theta \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

if x = "cos" theta - "cos" 2 theta, y = "sin" theta - "sin" 2 theta , then dy/dx is

If x = 2 cos theta - cos 2theta and y = 2 sin theta - sin 2theta then prove that : (dy)/(dx)=tan (3 theta)/(2)

If x=3costheta-cos^3theta y=3sintheta-sin^3theta find dy/dx

If 2 cos theta = sqrt3. prove that : 3 sin theta - 4 sin ^(3) theta =1

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

Find (dy)/(dx) if x= 3 cos theta - cos 2theta and y= sin theta - sin 2theta.

Prove that all lines represented by the equation (2 cos theta + 3 sin theta ) x + (3 cos theta - 5 sin theta ) y = 5 cos theta - 2 sin theta pass through a fixed point for all theta What are the coordinates of this fixed point ?

Solve sqrt(3) cos theta-3 sin theta =4 sin 2 theta cos 3 theta .

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

cos ^(2) 2 theta - sin ^(2) theta = cos theta . cos 3 theta.