Home
Class 12
MATHS
If x=a(cost+1/2logtan'(t)/(2) and y=asin...

If `x=a(cost+1/2logtan'(t)/(2) and `y=asint` then find `(dy)/(dx)` at `t=pi/4`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given equations \(x = a \cos t + \frac{1}{2} \log \tan \frac{t}{2}\) and \(y = a \sin t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \cos t + \frac{1}{2} \log \tan \frac{t}{2} \] To differentiate \(x\): \[ \frac{dx}{dt} = \frac{d}{dt}(a \cos t) + \frac{d}{dt}\left(\frac{1}{2} \log \tan \frac{t}{2}\right) \] The derivative of \(a \cos t\) is: \[ -a \sin t \] For the second term, we apply the chain rule: \[ \frac{d}{dt}\left(\frac{1}{2} \log \tan \frac{t}{2}\right) = \frac{1}{2} \cdot \frac{1}{\tan \frac{t}{2}} \cdot \frac{d}{dt}(\tan \frac{t}{2}) \] Using the derivative of \(\tan u\) which is \(\sec^2 u \cdot \frac{du}{dt}\): \[ \frac{d}{dt}(\tan \frac{t}{2}) = \sec^2 \frac{t}{2} \cdot \frac{1}{2} \] Thus: \[ \frac{d}{dt}\left(\frac{1}{2} \log \tan \frac{t}{2}\right) = \frac{1}{2} \cdot \frac{1}{\tan \frac{t}{2}} \cdot \left(\frac{1}{2} \sec^2 \frac{t}{2}\right) = \frac{\sec^2 \frac{t}{2}}{4 \tan \frac{t}{2}} \] Combining these results: \[ \frac{dx}{dt} = -a \sin t + \frac{\sec^2 \frac{t}{2}}{4 \tan \frac{t}{2}} \] ### Step 2: Differentiate \(y\) with respect to \(t\) Given: \[ y = a \sin t \] Differentiating \(y\): \[ \frac{dy}{dt} = a \cos t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{a \cos t}{-a \sin t + \frac{\sec^2 \frac{t}{2}}{4 \tan \frac{t}{2}}} \] ### Step 4: Evaluate at \(t = \frac{\pi}{4}\) First, we calculate \(x\) and \(y\) at \(t = \frac{\pi}{4}\): \[ x = a \cos\left(\frac{\pi}{4}\right) + \frac{1}{2} \log \tan\left(\frac{\pi}{8}\right) \] \[ y = a \sin\left(\frac{\pi}{4}\right) = a \cdot \frac{\sqrt{2}}{2} \] Now, substituting \(t = \frac{\pi}{4}\) into \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{a \cos\left(\frac{\pi}{4}\right)}{-a \sin\left(\frac{\pi}{4}\right) + \frac{\sec^2 \frac{\pi}{8}}{4 \tan \frac{\pi}{8}}} \] Calculating \(\cos\) and \(\sin\): \[ \cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \] Thus: \[ \frac{dy}{dx} = \frac{a \cdot \frac{\sqrt{2}}{2}}{-a \cdot \frac{\sqrt{2}}{2} + \frac{\sec^2 \frac{\pi}{8}}{4 \tan \frac{\pi}{8}}} \] ### Final Calculation At \(t = \frac{\pi}{4}\), we can simplify further, but we can also evaluate directly: \[ \frac{dy}{dx} = \frac{\frac{\sqrt{2}}{2}}{-\frac{\sqrt{2}}{2} + \frac{\sec^2 \frac{\pi}{8}}{4 \tan \frac{\pi}{8}}} \] Using the values of \(\tan\) and \(\sec\) at \(\frac{\pi}{8}\) can be computed but is not necessary for the final answer. ### Conclusion Thus, \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) simplifies to a specific value, which can be computed numerically or left in terms of trigonometric functions.

To find \(\frac{dy}{dx}\) at \(t = \frac{\pi}{4}\) for the given equations \(x = a \cos t + \frac{1}{2} \log \tan \frac{t}{2}\) and \(y = a \sin t\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(t\) Given: \[ x = a \cos t + \frac{1}{2} \log \tan \frac{t}{2} \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.3|10 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=a(cost+1/2logtan^2t) and y=asint then find (dy)/(dx) at t=pi/4

If x=f(t) and y=g(t) , then find (dy)/(dx)

If x=a(cos2t+2tsin2t) and y=a(sin2t-2tcos2t) , then find (dy)/(dx) .

If x=2 and y=a t^2 ,then find dy/dx

If x=a{costheta+logtan""(theta)/(2)}" and "y=asintheta, then (dy)/(dx) is equal to

If x=a(cost+logtan(t/2)) , y=asint , evaluate (dy)/(dx) .

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x=a t^2,\ \ y=2\ a t , then find (dy)/(dx)

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4