Home
Class 12
MATHS
If x^y=e^(x-y), prove that (dy)/(dx)=(lo...

If `x^y=e^(x-y)`, prove that `(dy)/(dx)=(logx)/(1+logx)^2`

Text Solution

AI Generated Solution

To solve the problem, we need to differentiate the equation \( x^y = e^{(x - y)} \) and prove that \( \frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2} \). ### Step-by-Step Solution: 1. **Take the natural logarithm of both sides**: \[ \log(x^y) = \log(e^{(x - y)}) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^y=e^(x-y), show that (dy)/(dx)=(logx)/({log(x e)}^2)

If x=e^(x/y) ,prove that (dy)/(dx)=(x-y)/(xlogx)

If x=e^(x//y) , prove that (dy)/(dx)=(x-y)/(xlogx)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)+e^(y-x)=0

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

x(dy)/(dx)=y(logy-logx+1)

If x^x+y^x=1 , prove that (dy)/(dx)=-{(x^x(1+logx)+y^x. logy)/(x . y^((x-1)))}

If y=sin(x^x) , prove that (dy)/(dx)=cos(x^x) .x^x(1+logx)

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1)) or, (dy)/(dx)+e^(y-x)=0

If e^x+e^y=e^(x+y) , prove that (dy)/(dx)=-(e^x(e^y-1))/(e^y(e^x-1))