Home
Class 12
MATHS
If x y=e^((x-y)), then find (dy)/(dx)...

If `x y=e^((x-y)),` then find `(dy)/(dx)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equation \(xy = e^{(x - y)}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ xy = e^{(x - y)} \] Taking the natural logarithm on both sides: \[ \ln(xy) = \ln(e^{(x - y)}) \] ### Step 2: Simplify using logarithmic properties Using the properties of logarithms, we can simplify: \[ \ln(x) + \ln(y) = (x - y) \cdot \ln(e) \] Since \(\ln(e) = 1\), this simplifies to: \[ \ln(x) + \ln(y) = x - y \] ### Step 3: Differentiate both sides with respect to \(x\) Now we differentiate both sides with respect to \(x\): \[ \frac{d}{dx}(\ln(x) + \ln(y)) = \frac{d}{dx}(x - y) \] Using the chain rule on the left side: \[ \frac{1}{x} + \frac{1}{y} \cdot \frac{dy}{dx} = 1 - \frac{dy}{dx} \] ### Step 4: Rearrange the equation Now, we rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{1}{y} \cdot \frac{dy}{dx} + \frac{dy}{dx} = 1 - \frac{1}{x} \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} \left(\frac{1}{y} + 1\right) = 1 - \frac{1}{x} \] ### Step 5: Solve for \(\frac{dy}{dx}\) Now we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{1 - \frac{1}{x}}{\frac{1}{y} + 1} \] This simplifies to: \[ \frac{dy}{dx} = \frac{(x - 1)}{x} \cdot \frac{y}{(y + 1)} \] ### Final Result Thus, we have: \[ \frac{dy}{dx} = \frac{(x - 1)y}{x(y + 1)} \] ---

To find \(\frac{dy}{dx}\) given the equation \(xy = e^{(x - y)}\), we will follow these steps: ### Step 1: Take the natural logarithm of both sides We start with the equation: \[ xy = e^{(x - y)} \] Taking the natural logarithm on both sides: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If y=e^((tan^(-1)x) then find (dy)/(dx)

If y=x^(sin x), then find (dy)/(dx)

If y=e^(x)sin x , then find (dy)/(dx)

y=e^(x) find (dy)/(dx)

If y=sinx+e^(x), Then find (dy)/(dx) .

If x^y=y^x ,then find (dy)/(dx)

If x y=e^(x-y) , find (dy)/(dx) .

If y=x^(x) then Find (dy)/(dx)

If y=(e^(x))/(sinx) , find (dy)/(dx)

If x^(y)=e^(x-y) , then (dy)/(dx) is equal to