Home
Class 12
MATHS
If y^x=x^y ,then find (dy)/(dx)dot...

If `y^x=x^y ,then find (dy)/(dx)dot`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( y^x = x^y \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ y^x = x^y \] Taking the natural logarithm on both sides gives: \[ \log(y^x) = \log(x^y) \] ### Step 2: Use the property of logarithms Using the property \( \log(a^b) = b \log(a) \), we can rewrite the equation as: \[ x \log y = y \log x \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \( x \). We will use the product rule for differentiation: \[ \frac{d}{dx}(x \log y) = \frac{d}{dx}(y \log x) \] Using the product rule on the left side: \[ \frac{d}{dx}(x \log y) = \log y + x \frac{d(\log y)}{dx} \] And for the right side: \[ \frac{d}{dx}(y \log x) = \frac{dy}{dx} \log x + y \frac{1}{x} \] ### Step 4: Set the derivatives equal Now we set the derivatives equal to each other: \[ \log y + x \frac{dy}{dx} \frac{1}{y} = \frac{dy}{dx} \log x + \frac{y}{x} \] ### Step 5: Rearrange the equation Rearranging gives: \[ x \frac{dy}{dx} \frac{1}{y} - \frac{dy}{dx} \log x = \frac{y}{x} - \log y \] ### Step 6: Factor out \( \frac{dy}{dx} \) Factoring out \( \frac{dy}{dx} \) from the left side: \[ \frac{dy}{dx} \left( \frac{x}{y} - \log x \right) = \frac{y}{x} - \log y \] ### Step 7: Solve for \( \frac{dy}{dx} \) Now we can solve for \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{\frac{y}{x} - \log y}{\frac{x}{y} - \log x} \] ### Step 8: Simplify the expression We can simplify this expression further: \[ \frac{dy}{dx} = \frac{y - x \log y}{x - y \log x} \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{y - x \log y}{x - y \log x} \] ---

To solve the equation \( y^x = x^y \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Take the logarithm of both sides We start with the equation: \[ y^x = x^y \] Taking the natural logarithm on both sides gives: ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

If x^y=y^x ,then find (dy)/(dx)

If y=x^(sin x), then find (dy)/(dx)

If y^(x)=x^(sin y) find (dy)/(dx)

If y=x^(x) then Find (dy)/(dx)

If x^(y)+y^(x)=1 then find (dy)/(dx)

If x^y+y^x=a^b , then find dy/dx .

If x^3+y^3=3a x y , find (dy)/(dx)

If x^5+y^5=5\ x y , find (dy)/(dx)

If (x+y)^2=2a x y , find (dy)/(dx)

If x^3+y^3=3a x y , find (dy)/(dx)