Home
Class 12
MATHS
"If "y=(tan x)^((tan x)^(tan x))," then ...

`"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = (\tan x)^{(\tan x)^{(\tan x)}} \) and find \( \frac{dy}{dx} \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log \left((\tan x)^{(\tan x)^{(\tan x)}}\right) \] ### Step 2: Apply the logarithmic power rule Using the property of logarithms, \( \log(a^b) = b \log a \), we can rewrite the right-hand side: \[ \log y = (\tan x)^{(\tan x)} \cdot \log(\tan x) \] ### Step 3: Take the logarithm again To further simplify, we take the logarithm of both sides again: \[ \log(\log y) = \log\left((\tan x)^{(\tan x)} \cdot \log(\tan x)\right) \] ### Step 4: Apply the logarithmic product rule Using the property \( \log(ab) = \log a + \log b \): \[ \log(\log y) = \log\left((\tan x)^{(\tan x)}\right) + \log(\log(\tan x)) \] Now applying the power rule again: \[ \log(\log y) = (\tan x) \cdot \log(\tan x) + \log(\log(\tan x)) \] ### Step 5: Differentiate both sides with respect to \( x \) Now we differentiate both sides: \[ \frac{1}{\log y} \cdot \frac{dy}{dx} = \frac{d}{dx}\left((\tan x) \cdot \log(\tan x)\right) + \frac{d}{dx}(\log(\log(\tan x))) \] ### Step 6: Differentiate the right-hand side using the product rule Using the product rule on the first term: \[ \frac{d}{dx}\left((\tan x) \cdot \log(\tan x)\right) = \tan x \cdot \frac{d}{dx}(\log(\tan x)) + \log(\tan x) \cdot \frac{d}{dx}(\tan x) \] Calculating each derivative: - \( \frac{d}{dx}(\log(\tan x)) = \frac{1}{\tan x} \cdot \sec^2 x \) - \( \frac{d}{dx}(\tan x) = \sec^2 x \) Thus, we have: \[ \frac{d}{dx}\left((\tan x) \cdot \log(\tan x)\right) = \tan x \cdot \left(\frac{1}{\tan x} \cdot \sec^2 x\right) + \log(\tan x) \cdot \sec^2 x \] This simplifies to: \[ \sec^2 x + \log(\tan x) \cdot \sec^2 x \] ### Step 7: Differentiate the second term Now we differentiate the second term: \[ \frac{d}{dx}(\log(\log(\tan x))) = \frac{1}{\log(\tan x)} \cdot \frac{1}{\tan x} \cdot \sec^2 x \] ### Step 8: Combine the results Combining the derivatives, we have: \[ \frac{1}{\log y} \cdot \frac{dy}{dx} = \sec^2 x + \log(\tan x) \cdot \sec^2 x + \frac{\sec^2 x}{\tan x \cdot \log(\tan x)} \] ### Step 9: Solve for \( \frac{dy}{dx} \) Multiplying both sides by \( \log y \): \[ \frac{dy}{dx} = \log y \left(\sec^2 x + \log(\tan x) \cdot \sec^2 x + \frac{\sec^2 x}{\tan x \cdot \log(\tan x)}\right) \] ### Final Expression Substituting back \( y \): \[ \frac{dy}{dx} = \log\left((\tan x)^{(\tan x)^{(\tan x)}}\right) \left(\sec^2 x + \log(\tan x) \cdot \sec^2 x + \frac{\sec^2 x}{\tan x \cdot \log(\tan x)}\right) \]

To solve the problem \( y = (\tan x)^{(\tan x)^{(\tan x)}} \) and find \( \frac{dy}{dx} \), we will use logarithmic differentiation. Here’s the step-by-step solution: ### Step 1: Take the logarithm of both sides We start by taking the natural logarithm of both sides to simplify the expression: \[ \log y = \log \left((\tan x)^{(\tan x)^{(\tan x)}}\right) \] ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.6|8 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.4|12 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

"If "xy+y^(2)=tan x + y," then find "(dy)/(dx).

If y=e^((tan^(-1)x) then find (dy)/(dx)

If (tan^(-1)x)^(y)+y^(cotx)=1, then find (dy)/(dx).

If y= e^(x) log tan 2x , than find (dy)/(dx)

If tan(x+y)+tan(x-y)=1 , find (dy)/(dx) .

y= "tan"^(-1)x then find (d^2y)/(dx^(2)) .

If tan(x+y)=e^(x+y) , then (dy)/(dx)

If y = tan ^(-1) (sec x + tan x) , " find " (d^(2) y)/( dx^(2)) at x = (pi)/(4)

If Y = (1 + tan x)/(1 - tan x) , then (dy)/(dx) is

If y=btan^(-1)(x/a+tan^(-1) y /x),f i nd (dy)/(dx)dot