Home
Class 12
MATHS
The differential cofficient of sec^(- 1...

The differential cofficient of `sec^(- 1)(1/(2x^2-1)) ` w.r.t `sqrt(1-x^2)` is-

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \), we will follow these steps: ### Step 1: Define the variables Let: - \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - \( z = \sqrt{1 - x^2} \) ### Step 2: Substitute \( x \) with \( \cos \theta \) To simplify the expressions, we can set: \[ x = \cos \theta \] Then: \[ z = \sqrt{1 - \cos^2 \theta} = \sin \theta \] ### Step 3: Express \( y \) in terms of \( \theta \) Substituting \( x = \cos \theta \) into \( y \): \[ y = \sec^{-1}\left(\frac{1}{2\cos^2 \theta - 1}\right) \] Using the identity \( 2\cos^2 \theta - 1 = \cos 2\theta \): \[ y = \sec^{-1}\left(\frac{1}{\cos 2\theta}\right) = \sec^{-1}(\sec 2\theta) = 2\theta \] ### Step 4: Differentiate \( y \) and \( z \) with respect to \( \theta \) Now, differentiate \( y \) and \( z \) with respect to \( \theta \): \[ \frac{dy}{d\theta} = 2 \] \[ \frac{dz}{d\theta} = \cos \theta \] ### Step 5: Find \( \frac{dy}{dz} \) Using the chain rule: \[ \frac{dy}{dz} = \frac{dy/d\theta}{dz/d\theta} = \frac{2}{\cos \theta} \] ### Step 6: Substitute back for \( \cos \theta \) Since \( x = \cos \theta \), we can express \( \cos \theta \) in terms of \( x \): \[ \frac{dy}{dz} = \frac{2}{x} \] ### Final Answer Thus, the differential coefficient of \( \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( \sqrt{1 - x^2} \) is: \[ \frac{dy}{dz} = \frac{2}{x} \]

To find the differential coefficient of \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) with respect to \( z = \sqrt{1 - x^2} \), we will follow these steps: ### Step 1: Define the variables Let: - \( y = \sec^{-1}\left(\frac{1}{2x^2 - 1}\right) \) - \( z = \sqrt{1 - x^2} \) ### Step 2: Substitute \( x \) with \( \cos \theta \) ...
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.7|6 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.8|15 Videos
  • DIFFERENTIATION

    CENGAGE ENGLISH|Exercise Concept Application 3.5|16 Videos
  • DIFFERENTIAL EQUATIONS

    CENGAGE ENGLISH|Exercise Matrix Match Type|5 Videos
  • DOT PRODUCT

    CENGAGE ENGLISH|Exercise DPP 2.1|15 Videos

Similar Questions

Explore conceptually related problems

Find the derivative of sec^(-1)(1/(2x^2-1)) w.r.t sqrt(1-x^2) at x=1/2

The differential coefficient of sin^(-1)t/(sqrt(1+t^2))w.r.t cos^(-1)1/(sqrt(1+t^2)) is (a) 1 AAt >0 (b) -1AAt<0 (c) 1AAt in R (d) None of these

Differential coefficient of sec(tan^(-1)x) is (a) x/(1+x^2) (b) xsqrt(1+x^2) (c) 1/(sqrt(1+x^2)) (d) x/(sqrt(1+x^2))

Find the derivative of sec^(-1)((1)/(2x^(2)-1))" w.r.t. "sqrt(1-x^(2))" at "x=(1)/(2).

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

Differentiate sec^-1""(1)/(2x^2-1) with respect to sqrt(1-x^2)

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t cos^(-1)x is

The derivative of cos^(-1)(2x^(2)-1) w.r.t. cos^(-1) is